

Advanced Machine Learning in Drug Discovery

Igor V. Tetko

Helmholtz Munich and BIGCHEM GmbH

Katholieke Universiteit te Leuven, 2 September 2024

HELMHOLTZ MUNICI

Agenda

Computational predictions in drug discovery

OCHEM platform

Consensus modelling as strategy to develop best models

Tox24 Challenge results

Uncertainty estimation and Applicability domain

Explainable AI

Traditional Process of Drug Discovery

• Profiling and screening in the virtual space helps to identify the most promising candidates

ADMETox filters in Bayer

	Endpoint	Model type	Data set s	ize 200	2009	2014	2019	Retraining
	Caco-2 permeation	C (N)	>10 000			RF	SVR	Weekly
Absorption	Caco-2 efflux	C (N)	>10 000			RF	SVR	Weekly
	Bioavailability (rat)	С	C ~2000				RF	On demand
	Human serum albumin	N	>30 000			PLS	MTNN	On demand
Metabolism	Fraction unbound	N	N >1000			PLS	MTNN	On demand
Metabolism	Microsomal stability (hum)	C (N)	>10 000			RF	RF	Weekly
	Microsomal stability (mouse)	C (N)	>10 000			RF	RF	Weekly
	Microsomal stability (rat)	C (N)	>10 000			RF	RF	Weekly
	Hepatocyte stability (rat)	C (N)	>30 000			RF	RF	Weekly
	hERG inhibition	С	>10 000			RF	SVM	Weekly
	Ames mutagenicity	С	>10 000			RF	RF	On demand
Toxicity	CYP inhibition isoforms	С	>10 000			RF	RF	On demand
	Phospholipidosis	С	<1000			SVM	SVM	On demand
Toxicity	Structure filter tool	Score	n.a.	-	-	-	-	On demand
	Solubility (DMSO)	N	>30 ,000			DIS	MTNN	On demand
	Solubility (Powder)	N	<10 000			FLO	MTNN	On demand
	logD @ pH 7.5	N	>70 000			PLS	MTNN	On demand
PhysChem	Membrane affinity	N	<10 000			PLS	MTNN	On demand
	рКа	N	>10 000			ANN	ANN	On demand
	Oral PhysChem score	Score	n.a.	-	-	-	-	On demand
	i.v. PhysChem score	Score	n.a.	-	-	1-	-	On demand

OCHEM https://ochem.eu

with modeling environment Database - Models -Home -

Welcome to OCHEM! Your possible actions

Online chemical database

Explore OCHEM data

Search chemical and biological data: experimentally measured, published and exposed to public access by our users. You can also upload your data

Create OSAR models

Build QSAR models for predictions of chemical properties. The models can be based on the experimental data published in our database.

Run predictions

Apply one of the available models to predict property you are interested in for your set of compounds.

Screen compounds with ToxAlerts

Screen your compound libraries against structural alerts for such endpoints as mutagenicity, skin sensitization, aqueous toxicity, etc.

Tutorials

Check our video tutorials to know more about the OCHEM features.

Our acknowledgements

Feedback and help

User's manual Check an online user's manual Check out the properties available on OCHEM

OCHEM contains 3771600 records for 688 properties (with at least 50 records) collected from 20521 sources

Melting Point logPow logBB LogL(water) Kpu(brain) LogD Kpu(adipose) Kpu(heart) Kpu(kidney) Kpu(liver)

Kpu(lungs) Kpu(muscle) Kpu(skin) logPl(+)

Water solubility LogL(blood) LogL(oil) ER fu(brain) P/Papp Cbrain/Cplasma IC50 Papp(Caco-2) Papp(MDCK) Oral absorption LIC 50 Cheart/Cplasma Papp ratio(Caco-2) Plasma protein binding Papp ratio(MDCK-mdr1) pIC50 %Human FA Human IA Human FA fraction unbound (fu) fraction ionized (fi) pKa VDss LogIC50 LogPI BBB permeability (qualitative) LogKoa LogRBA CYP450 modulation CYP450 reaction Vapor Pressure EC50 aquatic NOEC aquatic LOEC aquatic IC50 aquatic LC50 aquatic log(IGC50-1) LEL Henry's law constant Photolysis rate Kp Half-Life Hydrolysis HLh EC50 EROD induction I C 50 LCLo Boiling Point LD50 dermal LD50 oral LC50 terrestrial AMES LD50 Biodistribution Papp(PAMPA) Water solubility at pH

nephrotoxic-binary model published by dingshuang0501

v.4.2.282

👧 log in create account

A+ a- Privacy statement

Traditional representation of chemical structures

Examples of descriptors

✓ alvaDesc v.2.0.4 (5666/3D)

[select all] [select none] [select 3D] [unselect 3D] Constitutional descriptors (50) ✓ Topological indices (79) Connectivity indices (37) 2D matrix-based descriptors (608) Burden eigenvalues (96) ETA indices (40) Geometrical descriptors (3D, 38) ✓ 3D autocorrelations (3D, 80) ✓ 3D-MoRSE descriptors (3D, 224) GETAWAY descriptors (3D, 273) Functional group counts (3D, 154) Atom-type E-state indices (346) **2** 2D Atom Pairs (1596) Charge descriptors (3D, 15) Drug-like indices (30) ✓ WHALES (3D, 33) Chirality (70)

Ring descriptors (35) Walk and path counts (46) Information indices (51) 2D autocorrelations (213) P VSA-like descriptors (69) Edge adjacency indices (324) ✓ 3D matrix-based descriptors (3D, 132) RDF descriptors (3D, 210) WHIM descriptors (3D, 114) Randic molecular profiles (3D, 41) Atom-centred fragments (115) Pharmacophore descriptors (165) 3D Atom Pairs (3D, 36) Molecular properties (3D, 27) CATS 3D (3D, 300) **MDE** (19)

QSPR/QSAR modelling in OCHEM

Select the molecular descriptors 🕕		Create a model Select the training and validation sets, the machine learning method and the validation protocol
Recommended descriptor types (2D) OEState Bonds Indices Counts only ALogPS (2) Mold2 (777) CDDD JPlogP SIRMS ISIDA fragments The in Hashed Atom Pair fingerprint (MAP4) GSFragment (1138) QNPR Multilevel Neighborhoods of Atoms (MNA) Structural alerts (ToxAlerts and Functinal Groups) Recommended descriptor types (3D) alvaDesc v.2.0.4 (5666/3D) Dragon v. 7 (5270/3D) CDK 2.7.1 descriptors (256/3D) CDK 2.7.1 descriptors (320) RoKit descriptors (3D) MORDRED descriptors (1826/3D) MORDRED descriptors (1826/3D) MORPAC2016 descriptors (1826/3D) MORDAc2015 descriptors (16251/3D) MORAC2016 descriptors (625/3D) MERSY descriptors (529/3D) MERSY descriptors (529/3D) MERSY descriptors (54/3D) MERSY descriptors (54/3D) MERSY descriptors (54/3D) Spectrophores (144/3D) Spectrophores (144/3D)	Predictions by OCHEM's featured models Ames levenberg Toxicity against T. Pyriformis ALogPS 3.0 CYP1A2 Estate+ALogPS CYP2O9 Estate+ALogPS CYP2O6 Estate+ALogPS CYP2D6 Estate+ALogPS CYP2D6 Estate+ALogPS CYP206 Estate+ALogPS Pyrolysis point prediction (best Estate) Melting Point prediction (best Estate) Water solubility model based on logP and Melti ALOGPS 2.1 logP ALOGPS 2.1 logS Outputs of other OCHEM models Dbsolete/Additional descriptor types CDK 2.0 descriptors (256/3D) CDK 1.4.11 descriptors (256/3D) Bragon v. 5.4 (1644/3D) Dragon v. 5.4 (1644/3D) Dragon v. 5.4 (16485/3D) MOPAC 7.1 descriptors (25/3D)	Select the training and validation sets: Training set (required): peptidesregr [details] Add a validation set The model will predict this property: LogD using unit: Log unit • Skip model configuration and use the predefined settings Choose the learning method: • Suggested modeling methods: • ASNN: ASsociative Neural Networks doi:10.1007/978-1-60327-101-1_10 • (New) Attentive FP doi: 10.1021/acs.jmedchem.9b00959 • Chorse the learning methods: • CSUGESTOR - Copy MPNN for property prediction (GPU) doi:10.1021/acs.jcim.9b00237 • CNF - Convolutional Neural Network Fingerprint (GPU) doi:10.1007/978-3-030-30493-5_79 • Transformer-CNF model • Consensus model (based on models developed for the same set) • DEEPCHEM: several methods from DeepChem (GPU) arXiv:1703.00564 • (New) DIMENET - Directional Message Passing Neural Network arXiv:2003.01213 • Deep Learning Consensus Architecture (DLCA) doi:10.1021/acs.jcim.9b00526 • DNN: Deep Neural Network (GPU) doi:10.1021/acs.jcim.8b00526 • DNN: Deep Neural Network (GPU) arXiv:190.200807120026 • SMLR: Fast Stagewise Multiple Linear Regression doi:10.1134/S0012500807120026 • GNN - Graph Isomorphisom Network (GPU) arXiv:1910.13124 <t< th=""></t<>
Special descriptors (scaffolds, fingerprints):		 KPLS - Kernel Partial Least Squares doi:10.1109/JJCNN.2006.246832 LibSVM: grid-search parameter optimisation doi:10.1145/1961189.1961199 LSSVMG: Least Squares Support Vector Machine (GPU) doi:10.1023/A:1018628609742
Chemaxon Scaffolds Silicos-It Scaffolds ECFP Fingerprints MolPrint Fingerprints Conditions of experiments		 MLR: Multiple Linear Regression PLS: Partial Least Squares doi:10.1016/S0169-7439(01)00155-1 RFR: Random Forest regression and classification doi:10.1023/A:1010933404324 Transformer-CNN - Transformer Convolutional Neural Network (GPU) doi:10.1186/s13321-020-00423-w Transformer-CNNi - faster Transformer-CNN (GPU) doi:10.1186/s13321-020-00423-w WEKA-J48: Weka C4.5 decision trees, only classification - use with bagging doi:10.1145/1656274.1656278 WEKA-FF: Random Forest, only classification doi:10.1023/A:1010933404324
pH lonisable		○ XGBoost: Scalable and Flexible Gradient Boosting doi:10.1145/2939672.2939785

Model validation

Validation method: N-Fold cross-validation
Number of folds: 5
Stratified cross-validation (classification only)
Treat each record as a new molecule

You can create a model from template: import an XML model template or use another model as a template

Each descriptor re-presentation sees only part of molecules

Blind monks examining an elephant, an <u>ukiyo-e</u> print by <u>Hanabusa Itchō</u> (1652–1724). https://en.wikipedia.org/wiki/Blind_men_and_an_elephant

Consensus modelling

- Best method(s) are defined
- Average prediction of models is used
- The consensus prediction is more accurate and stable

EPA's high-throughput screening data on 1,800 chemicals is accessible through the interactive Chemical Safety for Sustainability Dashboards (iCSS dashboard). The iCSS dashboard provides user-friendly and customizable access to toxicity data from ToxCast and Tox21 high-throughput chemical screening technologies.

Using the TopCoder and InnoCentive crowd-sourcing platform, EPA invited the science and technology community to work with the data and provide solutions for how the new toxicity data can be used to predict potential health effects. The ToxCast data challenges focused on using this data and other publicly available data to predict the lowest effect level from traditional toxicity studies using laboratory animals. Challenge winners received awards for solving this challenge.

Key Links

- Lowest Effect Level Challenge Results (PDF, 497KB, 18pp)
- Chemical Safety for Sustainability Dashboards
- Complete ToxCast Phase II Data & Files
- TopCoder Challenge
- InnoCentive Challenge
- Stakeholder Workshops

ToxCast Challenge

- OCHEM model (by Dr. S. Novotarskyi) got the the first position for the US Environmental Protection Agency (EPA) challenge in May 2014
- Prediction of systemic Lowest Effect Level (LEL)
 - lowest dose that shows adverse effects in animal toxicity tests
- Challenge: build a prediction model using data from high-throughput *in vitro* assays provided by EPA to quantitatively predict a chemical's systemic LEL.

http://www.epa.gov/ncct/challenges.html

ToxCast Challenge SetUp

- Training set of 483 compounds
- Test set of 1371
 - Leader board: 63
 - Private set: 80

EPA in vitro assays data were also provided (not used in Top I solution)

Model: Associative Neural Network (training with descriptor set optimization)

TOC

Lowest Effect Level (LEL) ToxCast EPA prediction challenge

in vitro + in silico \rightarrow in vivo \approx in silico \rightarrow in vivo

data upload, descriptors calculation, modeling, consensus, Rank-I submission, on-line available

			RMSE	
descriptor set	number of selected descriptors	whole test set (n = 143)	inside of AD^a ($n = 136$)	outside of AD $(n = 7)$
CDK	159	1.13	1.01	2.4
Dragon	1824	1.15	1.05	2.4
Fragmentor	631	1.18	1.04	2.7
GSFrag	202	1.1	0.97	2.5
Mera, Mersy	242	1.04	0.96	2.1
Chemaxon	97	1.16	1.06	2.4
Inductive	39	1.17	1.03	2.7
Adriana	133	1.14	1.01	2.5
QNPR	381	1.12	1.02	2.7
E-state	185	1.16	1	2.8
in vitro	143	1.21	1.11	2.5
Consensus	4036	1.08	0.96	2.5

Table 1. Number of Descriptors and Models' Accuracy for the Prediction of the Test Set Compounds

^{*a*}AD is the applicability domain of the model as defined by OCHEM⁸ (see also ref 20).

Statistical uncertainty

				test set							
	training set $(n = 483)^a$		provisional subset $(n = 63)$		final subset $(n = 80)$			full, $n = 143$			
model	RMSE	R^2	RMSE	rank	RMSE	R^2	rank	RMSE			
novserj	0.88 ± 0.04	0.27 ± 0.04	1.03 ± 0.08^{b}	8	1.12 ± 0.08^{b}	0.31	1	1.08 ± 0.07			
NobuMiu			1.03	9	1.13	0.30	2	1.09			
a9108tc			1.05	16	1.13	0.29	3	1.10			
klo86 min			1.09	27	1.14	0.29	4	1.12			
in vitro assays ^c	0.97 ± 0.04	0.11 ± 0.03						1.24 ± 0.09			
$MW + NC^{d}$	0.97 ± 0.04	0.11 ± 0.03						1.18 ± 0.08			

Table 2. Summary of the Performance of the Top-Ranked Models of the EPA ToxCast Challenge

^{*a*}Prediction accuracy for the "out-of-the-bag" samples. ^{*b*}Confidence intervals were estimated using the subsets, which were sampled from the training set, and each had the same size as the respective test set (see for more details ref 23). ^{*c*}Best model based on the *in vitro* assay descriptors developed using the LibSVM method (see also Table S1). ^{*d*}Model based on molecular weight (MW) and number of carbon atoms (NC) developed using the same approach as the above *in vitro* model.

Tox21 Data Challenge 2014

Contact Us

» Home

Registration About

Data/Resources

Submissions

Discussion

Leaderboard

Survey

About the Data 🔹

The Challenge

The 2014 Tox21 data challenge is designed to help scientists understand the potential of the chemicals and compounds being tested through the Toxicology in the 21st Century initiative to disrupt biological pathways in ways that may result in toxic effects.

The goal of the challenge is to "crowdsource"

All challenge winners will receive the opportunity to submit a paper for publication in a special thematic issue of Frontiers in Environmental Science and recognition on the NCATS website and via social media.

Best Balanced accuracy - Abdelaziz, A. et al. *Front. Environ. Sci.* 2016, 4, 2.

Challenge setup

Subchallenge Overview

Subchallenges 1-12

Predict the compound activity outcome (active or inactive) in one or more of the 12 pathway assays based on the chemical structure information for the following assays:

•estrogen receptor alpha, LBD (ER, LBD)

•estrogen receptor alpha, full (<u>ER, full</u>)

•aromatase

•aryl hydrocarbon receptor (<u>AhR</u>)

•androgen receptor, full (AR, full)

•androgen receptor, LBD (AR, LBD)

•peroxisome proliferator-activated receptor gamma (PPAR-gamma)

•nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (Nrf2/ARE)

•heat shock factor response element (HSE)

•<u>ATAD5</u>

•mitochondrial membrane potential (MMP)

•<u>p53</u>

Grand Challenge (All 12) Subchallenge 13 (all nuclear receptor) Subchallenge 14 (all stress response pathways)

Set	Class	AhR	AR	AR-LBD	ARE	Aromatase	ATAD5	ß	ER-LBD	HSE	MMP	p53	PPAR.g
Train	Inactive	7219	8982	8296	6069	6866	8753	6760	8307	7722	6178	8097	7962
Train	Active	950	380	303	1098	360	338	937	446	428	1142	537	222
Leader	Inactive	241	289	249	186	196	247	238	277	257	200	241	252
Leader	Active	31	3	4	48	18	25	27	10	10	38	28	15

Tox21 Challenge winners

ROC-AUC:

Mayr et al DeepTox: Multi-task deep neural network https://doi.org/10.3389/fenvs.2015.00080

Best balanced accuray: Abdelaziz et al. ASNN: Associative neural network <u>https://doi.org/10.3389/fenvs.2016.00002</u>

Unbalanced Data? Stop Using ROC-AUC and Use AUPRC Instead

Advantages of AUPRC when measuring performance in the presence of data imbalance — clearly explained

 Daniel Rosenberg
 Follow

 Published in Towards Data Science
 6 min read
 Jun 7, 2022

🖑 181 🛛 Q 6

https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-instead-46af4910a494

Area Under the Precision-Recall Curve (AUPRC)

https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-instead-46af4910a494

Winning model: OCHEM-generated consensus model

Andrea Kopp (Hunklinger) SLAS Europe 2023

25.05.2023

HELMHOLTZ MUNICI)

Together with Peter Hartog, Martin Šícho and Guillaume Godin

Hunklinger at al, DOI: 10.1016/j.slasd.2024.01.005

Solubility challenge set-up

- Experimentally: Nephelometer measures undissolved sediment
- Classification into *low, medium* and *high* soluble with phenytoin and amiodarone as thresholds
- 70k training datapoints, 15k public leaderboard, 15k private leaderboard
- Stratified random sampling

Molecular representation

@Peter Hartog with BioRender.com

Hunklinger at al, DOI: 10.1016/j.slasd.2024.01.005

Quadratic kappa metric scores

@Peter Hartog with BioRender.com

Hunklinger at al, DOI: 10.1016/j.slasd.2024.01.005

33rd International Conference on Artificial Neural Networks

Tox24 Challenge: How accurately can we predict binding to transthyretin?

Start:17/05 » Submit:31/08 » Winner:18/09 » Article:31/12

https://ochem.eu

https://e-nns.org/icann2024

Transthyretin binding and EDC

TTR is one of the serum binding proteins responsible for delivering thyroid hormones (THs) to target tissues and maintaining the balance of free versus bound THs.

The binding of compounds to TTR and subsequent displacement of TH is important to identify potential interference of the thyroid system which are endocrine disrupting chemicals (EDCs).

Tox24 Challenge

EPA submitted an article in February with screening of TTR compounds

March-April: negotiation with EPA, ChemResTox, ICANN2024, AIDD to organize the challenge

May 17th – data are publicly available

- 1012 training set
- 200 LeaderBoard set
- 300 Blind Test set

August 15th

• LeaderBoard set is available

September 1st

Results announced

Home **Conference** - Registration Contributors - Organisation - 1

Tox24 Challenge

The **Tox24** challenge is designed to assess the progress in computational methods for predicting in vitro activity of compounds. All ML experts are strongly invited to participate in it and compete for a prize of **1000€**, to be awarded for the winning model.

Tetko, I. V. Tox24 Challenge. Chem. Res. Toxicol. 2024, 37 (6), 825-826. https://doi.org/10.1021/acs.chemrestox.4c00192.

Tox24 Challenge results

Tox24 final ranking based on the blind set - congratulations to the winning team Amidoff! In case of equal performances the earlier entry was used. Models with lower RMSE (Root Mean Squared Error) are better. You can access the winning model here

rank	User	submission id	*** Blind test set RMSE ***	Leaderboard set RMSE	Submission time (GMT-12)
1	Amidoff	1148	20.5	7.8	25-08-2024 06:13:02
2	tcirino	1098	20.7	4.1	21-08-2024 08:53:04
3	znavoyan	1309	20.7	5.7	30-08-2024 07:16:19
4	uesawa	1149	20.8	21.2	25-08-2024 14:03:09
5	YingkaiZhangLab	1388	20.8	20.7	31-08-2024 06:49:33
6	AntonijaBoss	1400	21.2	20.6	31-08-2024 09:07:16
7	SankalpJain	1284	21.3	5.1	30-08-2024 02:46:16
8	alx.dga	1097	21.4	0.0	21-08-2024 08:45:46
9	luispintoc	1209	21.4	15.0	28-08-2024 06:00:04
10	GAT_Wang	1253	21.4	6.0	29-08-2024 15:26:28
11	vchupakhin	1404	21.4	3.2	31-08-2024 13:34:03

Winning model (Makarov, D.; Ksenofontov, A.)

Model name: Consensus TTR binding activity , published in Tox24 Challenge Public ID is 1149

Predicted property: **TTR binding activity** modeled in % Training method: Consensus

Data Set	#	R2	q2	RMSE	MAE
• Training set: TTR_train	1208	0.62 ±	0.62 ±	22.3 ±	16.6 ±
	records	0.02	0.02	0.6	0.4
• Test set:	300	0.67 ±	0.67 ±	21 ± 1	15.6 ±
tox24_challenge_test_data [x]	records	0.04	0.03		0.8

100 75 50 0 25 0 0 -25 -40 -20 0 20 40 60 80 100 Measured value

4 individual models: ModelID: 1145 ModelID: 1146 ModelID: 1147 ModelID: 1148 AVERAGE

No validation

Size: 1 Kb

Number of compounds ignored because of errors in original model = 4

Winning model (Makarov, D.; Ksenofontov, A.)

Consensus model:

- Transformer CNN
- Transformer CNF2
- Cat Boost based on Mold2 descriptors
- Cat Boost based on ALOGPS + OESTATE descriptors

And using mixture descriptors

Machine Learning directly from chemical structures

Saccharin: c1ccc2c(c1)C(=O)NS2(=O)=O

Text processing: convolutional neural networks, transformers, LSTM Graph processing: message passing neural networks

Image augmentation

https://github.com/aleju/imgaug

L. Ruddigkeit et al., J. Chem. Inf. Model. 2012, 52, 2864-2875 (GDB-17)

But: we can't predict unpredictable!

10⁵ (Soulbility set) \rightarrow 10¹¹ (GDB17)

1 → 1,000,000

Accuracy of prediction

Х

Overview of analyzed distances to models (DMs)

EUCLID $EU_{m} = \frac{\sum_{j=1}^{k} d_{j}}{k}$ k is number of nearest neighbors, m index of model	TANIMOTO $Tanimoto(a,b) = \frac{\sum x_{a,i} x_{b,i}}{\sum x_{a,i} x_{a,i} + \sum x_{b,i} x_{b,i} - \sum x_{a,i} x_{b,i}}$ $x_{a,i} \text{ and } x_{b,i} \text{ are fragment counts}$			
LEVERAGE	PLSEU (DModX)			
$LEVERAGE = \mathbf{x}^{\mathrm{T}}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{x}$	Error in approximation (restoration) of the vector of input variables from the latent variables and PLS weights.			
STD $STD = \frac{1}{N-1} \sum (y_i - \overline{y})^2$	CORREL			
\cdot 1 1 1 1 1 1 1 1 \overline{v}	$CORREL(a) = \max_{j} CORREL(a,j) = R^{2}(\mathbf{Y}^{a}_{calc}, \mathbf{Y}^{j}_{calc})$			
y_i is value calculated with model <i>i</i> and ^y is average value	$Y^a = (y_1, \dots, y_N)$ is vector of predictions of molecule <i>i</i>			

Descriptor space, ASNN model: DM <u>does not work</u>

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.

Consensus modelling

- Best method(s) are defined
- Average prediction of models is used
- The consensus prediction is more accurate and stable

Property-based, ASNN model: DM does work!

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.

Applicability domain assessment (regression)

- Several applicability domain measures (bagging-based for all methods; standard deviation, correlation in the property space, leverage, etc.)
- Automatic exclusion of outliers based on *p-value*

Accuracy of predictions for classification model

Overview	Applicability	domain							
Model name Benchmarki Predicted pr Training me	: Ames levent ng of distance operty: AMES thod: ANN	perg , publis to models f	shed in A for Ames	Applicability mutagenic	domains for ity set. publi	r classifica c identifie	ation proble r is 1	ms: Corre er	[OEstate] I. limit: 0.95 Variance threshold: 0.0, Maximum value: 999999, Levenberg, 1000 iterations, 3 neurons nsemble=100 additional param PARALLEL=10 5-fold cross-validation
Data Set				#	Accuracy	Balanced	accuracy		-
o Training	o Training set: Ames challenge training			57 records 359 selected)	78.1 ± 1.2	l ± 1.2 77.9 ± 1.3			Calculated in 2402 seconds Size: 450 Kb
o Test set	: Ames challer	nge test [x]	21	81 records	79.9 ± 1.7 79.8 ± 1.7				
Real↓/F	Predicted→	inactive	active		Real↓/Predi	cted→	inactive	active	
in	active	1521	495		inactiv	e	802	207	
а	ctive	460	1883		active)	232	940	
	Training (C	Driginal)				Test (Or	ginal)		

Overview Applicabi

Applicability domain

Discriminative power of model for AMES test

Accuracy of all models for AMES test set

Percent of compounds Sushko et al, JCIM, 2010, 50, 2094 - 2111.

Model explanations

OECD Home >> Chemical safety and biosafety >> Assessment of chemicals >> Validation of (Q)SAR Models

Validation of (Q)SAR Models

Although a variety of (Q)SAR models have been developed, and some models have been used in assessment of chemicals in some countries for many years, transparent validation process and objective determination of the reliability of (Q)SAR models are crucial in order to further enhance the regulatory acceptance of (Q)SAR models.

In November 2004, the OECD member countries agreed on the principles for validating (Q)SAR models for their use in regulatory assessment of chemical safety. The agreed principles provide member countries with basis for evaluating regulatory applicability of (Q)SAR models and will contribute to their enhanced use for more efficient assessment of chemical safety.

OECD principles for the Varidation, for Regulatory Purpose, of (Q)SAR Models

A full report from the OECD Expert Group on (Q)SARs was also published in 2004:

The report from the Expert Group on (Q)SARs on the validation of (Q)SARs

In February 2007, the OECD published a "Guidance Document on the Validation of (Q)SAR Models" with the aim of providing guidance on how specific (Q)SAR models can be evaluated with respect to the OECD principles. A check list for the validation, a reporting format for the validation and validation case studies are attached as annexes:

Guidance Document on the Validation of (Q)SAR Models

In November 2004, the 37th OECD's Joint Committee and the Working Party on Chemicals, Pesticides and Meeting of the Chemicals Biotechnology (Joint Meeting) agreed on the OECD Principles for the Validation, for Regulatory Purposes, of (Q)SAR Models.

The OECD Principles of (Q)SAR Validation

To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be associated with the following information:

- 1.a defined endpoint;
- 2.an unambiguous algorithm;
- 3.a defined domain of applicability;
- 4.appropriate measures of goodness-of-fit, robustness and predictivity;
- **5.**a mechanistic interpretation, if possible.

Model agnostic methods: SHAP values, LIME

SHAP values

Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." *Advances in neural information processing systems* 30 (2017).

$$\phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \left[f_{S \cup \{i\}}(x_{S \cup \{i\}}) - f_S(x_S) \right]$$

LIME

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining.* 2016.

$$\xi(x) = \operatorname*{argmin}_{g \in G} \ \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

See full lecture of Dr. Wellawatte at <u>https://ai-dd.eu/lectures</u>

Linear classification model for AMES test

Mopac2016 descriptors

 $\label{eq:Y} Y = 0.5378 - 0.3411* Mulliken Electronegativity - 0.3277* Lumo Energy + 0.2389* Ionisation Potential + 0.1178* Final Heat + 0.05051* Dipol Point Charge$

GSFRAG

Y = 0.5372 + 0.1612*c10 + 0.1309*p1-1N - 0.1134*p2B + 0.05943*c3 + 0.05349*c9

E-state descriptors

Y = 0.5375 + 0.09956*PSA + 0.08731*aCNOS - 0.08703*DONORS - 0.06814*SsCH3 - 0.04474*SssO

Dragon descriptors

 $Y = 0.5375 - 0.1173*GATS1m + 0.0954*MATS1e - 0.06558*SpMax_AEA(dm) + 0.05933*J_D/Dt + 0.05496*nR03$

Structural Alerts

Y = 0.4733 + 0.191*Alert146 - 0.004113*Alert238- 0.1024*Alert213 + 0.1912*Alert214+ 0.01988*Alert196

ToxAlerts

Screening of compounds against published toxicity alerts, groups, frequent hitters

- Filter alerts by endpoints or publications
- Create or upload custom SMARTS rules

	Functional groups	÷
	All endpoints	
	Acute Aquatic Toxicity	
	Dummy	
ł	Skin sensitization	
	Non-genotoxic carcinogenicity	
I	Genotoxic carcinogenicity, mutagenicity	
	Reactive, unstable, toxic	
	Potential electrophilic agents	
	Idiosyncratic toxicity (RM formation)	
	Custom filters	
	Functional groups	
	Promiscuity	
	Developmental and mitochondrial toxicity	
	PAINS compounds	
	Biodegradable compounds	
	Nonbiodegradable compounds	
	His-tag frequent hitters	
	AlphaScreenTM frequent hitters	
	Chelating agents	

Article: All articles ÷ All articles 1988 Ashby 1990 Hermens 1992 Verhaar, H.J.M. 1994 Payne 1994 Barratt 2004 Gerner 2005 Kazius 2005 CheckMol 2005 Kalgutkar 2005 Bailey 2008 Enoch 2008 Benigni 2011 Maybridge 2011 Enamine 2011 "Ontario"_filters 2011 ChemDiv 2011 Life Chemicals 2011 Enoch 2012 Tetko, I.V.

Sushko et al, JCIM, 2012, 52(8):2310-6.

Functional groups

(A) Online chemical da	tabase			v.2.4.45
with modeling envir	ronment		Welcome, Guest! I	Logout
Home Database Models				A+ a-
ToxAlerts: Structural alerts browser Here you can browser structural alerts for variou	us toxicological endpoints			
FILTERS	By Upload new alerts	🔍 Screen compounds 💜 💜	1	
Article:	101 - 200 of 379	<< < 100 items on page 2 of 4 > >>		
Endpoint / Filter type: Functional groups C Name / Alert ID: Show only approved alerts	HS	Four-membered heterocycles with one heteroatom (HS) A = any atom except carbon; a dashed line indicates any type of covalent bonds High specificity (HS) pattern matches chemicals that include exact heterocyclic molety as in the depiction (fusion with other ring(s) are not allowed) SMARTS: [!#6!#1;R1]1~[#6R1]~[#6R1]~[#6R1]~1 Endpoint: Functional groups		
		Extended functional groups (EFG): an efficient set for chemi		T <u>r</u>
		Molecules 2015; subm () Alert ID: 7A2450	16:45, 8 Mar 13 / 13:25, 31 Oct 15 SALMINA1987 ⊠ / itetko ⊠	
	HS L	Saturated four-membered heterocycles with one heteroatom (HS) A = any atom except carbon High specificity (HS) pattern matches chemicals that include exact heterocyclic moiety as in the depiction (fusion with other ring(s) are not allowed) SMARTS: [#6]#1;R1]1-[#6R1]-[#6R1]-[#6R1]-1 Endpoint: Functional groups Salmina, E. Extended functional groups (EFG): an efficient set for chemi Molecules 2015; subm () Alert ID: 7A2451	16:45, 8 Mar 13 / 13:25, 31 Oct 15 SALMINA 1987 sa / itelkn sa	
	HS	Azetidines (HS) High specificity (HS) pattern matches chemicals that include exact heterocyclic molety as in the depiction (fusion with other ring(s) are not allowed) SMARTS: [#7R1]1-[#6R1]-[#6R1]-1 Endpoint: Functional groups Salmina, E. Extended functional groups (EFG): an efficient set for chemi Molecules 2015; subm () Aert ID: TA2452	1645, 8 Mar 13 / 13:25, 31 Oct 15 SALMINA 1987 @ / itetko @	
	HS	Oxetanes (HS) High specificity (HS) pattern matches chemicals that include exact heterocyclic moiety as in the depiction (fusion with other ring(s) are not allowed) SMARTS: [#8R1]1-[#6R1]-[#6R1]-[#6R1]-1 Endpoint: Functional groups Salmina, E. Extended functional groups (EFG): an efficient set for chemi Molecules 2015; subm () Alert ID: 7A2463	16:45, 8 Mar 13 / 13:25, 31 Oct 15 SALMINA1987 छ्व / itetko छ्व	
		Thietanes (HS)		

Overrepresented functional groups (AMES)

Importance of ToxAlerts in Random Forest model

Layerwise Relevance Propagation (LRP)

Bach, S. et al. PloS One 2015, 10, e0130140.

Interpretation of models

P. Karpov, G. Godin, I. V. Tetko, *J. Cheminform.* **2020**, *12*, 17. <u>https://github.com/bigchem/transformer-cnn</u>

Contrafactual examples – Molecular Model Agnostic Counterfactual Explanations

EPFL

Wellawatte, G. P., Seshadri, A., & White, A. D. (2022). Chemical science, 13(13), 3697-3705.

LIAC Geemi Wellawatte

https://github.com/ur-whitelab/exmol

Example of interpretation of RF model for BBP

EPFL

Explanation: The negative example can be made to cross the blood brain barrier if the carboxylic group is altered.

Experimental observations: hydrophobic interactions and surface area govern BBB permeation (Boobier S, *et al., Nat Commun.* 2020)

Wellawatte, G. P., Seshadri, A., & White, A. D. (2022). Chemical science, 13(13), 3697-3705.

LIAC Geemi Wellawatte

See full lecture of Dr. Wellawatte at <u>https://ai-dd.eu/lectures</u>

MMP definition

A molecular matched pair (MMP) is a pair of molecules that have only a (minor) single-point difference. The typical way is to define a minor difference as a changed molecular fragment with less than 10 atoms.

Data analysis using Matched Molecular Pairs

Identify molecular transformations that lead to significant change of activity (AMES test data are shown)

Identification of predicted activity cliffs

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-014-0048-0

XAI methods

Attention Maps, Rollout, Grads, AttGrads, CAT and AttCAT

Hartog P et al, Using test-time augmentation to investigate explainable AI: inconsistencies between method, model and human intuition *J. Cheminformatics*, **2024**, 16 (1), 39.

Importance of features across XAI methods

Hartog P et al, Using test-time augmentation to investigate explainable AI: inconsistencies between method, model and human intuition *J. Cheminformatics*, **2024**, 16 (1), 39.

AiChemist – Explainable AI for molecules

Twitter: aichemist_dn or Bluesky: aichemist

Take home message

New methods based on representation learning successfully compete with traditional ones

Consensus modelling is a best approach to develop models with the highest prediction accuracy

Applicability domain of models and accuracy of predictions are crucial for their use and interpretation predictions

Model interpretation is essential for their acceptance by the end users (sometimes legally required)

Different XAI explanations do not always overlap; statistical evaluation is strongly required

Acknowledgements

Katya Ahmad Thalita Chirino Mark Embrechts

Andi Kopp Peter Hartog Fabian Krüger Paula Torren-Peraire Varvara Voinarovska Nesma Mousa

Guillaume Godin (ex Firmenich) Ruud van Deursen (DSM-Firmenich)

Michael Sattler (HMGU)

Alexander von Humboldt Stiftung/Foundation

AiChemist

