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Problem statement
-Thanks to their sensitivity and efficiency, fluorescence-based assays are the 
most widely employed technology for the high-throughput-screening (HTS) of 
compounds [1, 2]. 
-Despite the technical advantages brought to the field, fluorescence-based 
assays result in a significant number of false positive readouts caused by assay 
interference [3]. 
- If false readouts remain undetected, they may trigger costly follow-up studies 
that may eventually turn out as futile. 

1. Macarron R.  et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discovery
2.  https://atrandi.com/blog/fluorescence-assays-dominate-life-science-research
3. Sink R. et al. False positives in the early stages of drug discovery. Curr. Med Chem



Fields of application
-HITS TRIAGING:
The practice of selecting a compound series with a promising efficacy profile 
that meets basic safety requirements and to justify investment in its optimization [4].

-NEGATIVE DESIGN:
Battery of methods that are usually employed to eliminate molecules with 
undesired properties [5].

4. Vincent F.  et al. Hit Triage and Validation in Phenotypic Screening: Considerations and Strategies. Cell Chem Bio
5. Yang Z. et al. Application of Negative Design To Design a More Desirable Virtual Screening Library. J. Med Chem



Fluorescence Intensity Assays (FLINT)

4

Fluorogenic assays Fluorescence polarization (FP)

Credits: https://bpsbioscience.com/

• Convenient for screening enzymatic 
inhibitors

• Fluorescent emission upon enzymatic 
cleavage • Detect dynamic interaction between 

the biological target and the ligand
• Fluorescent emission upon interaction



Other popular fluorescence-based assay formats
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• Fluorescence Resonance Energy Transfer (FRET)
Measures the energy transfer between a donor-acceptor pair. For the energy transfer to 
work donor and acceptor must be in close proximity.

• Time-Resolved FRET (TR-FRET)
Measures the time a fluorophore spends in the excited state before it reverts to its 
ground state by emitting a photon (FLT).

Credits: https://bpsbioscience.com/

Pro of fluorescence-based assays



No one’s safe: false positive 
readouts
“Many hits are artefacts - their activity does not depend on a specific, drug-
like interaction between molecule and protein. Artefacts have subversive 
reactivity that masquerades as drug-like binding and yields false signals 
across a variety of assays.”[6]

6. Baell J. et al. Chemical con artists foil drug discovery. Nature



Interfering compounds and interference mechanisms
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Dealing with assay interference: 
prevention measures and hit-
triaging



Experimental countermeasures
• Screening with non-ionic detergents to prevent compounds aggregation

• Use of novel fluorophores emitting in a different region of the spectrum
• Use orthogonal assays to confirm the primary hits

• Implementation of counter-screen assays to identify interfering compounds
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Why we do in-silico modelling? To avoid running expensive experiments!
Review coming soon… stay tuned!

In-silico methodologies
Global methods:

HitDexter3, Pan-Assay interference compounds (PAINS)*

Specialized methods:
InterPred, ChemFluo, AZ (TR-)FRET interference classifiers



A new methodology to identify 
compounds interfering with 
specific-assay technologies
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Overview
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Data preprocessing: Bayer AG HTS historical data
# Assays: 

187

# Bioactivity 
readouts:

296,830,391
# Compounds: 

1’441,052

Preprocessing pipeline
1. Assays must have bioactivity recorded 
    for at least 80% of the compounds
2. Compounds must have bioactivity 
     recorded for at least 80% of the assays

Dataset composition after step 1 and 2: 
205 assays, 1’488’407 compounds

3. Assays must be annotated
4. Compounds must be unique (SMILES   
    strings matching)
5. Binarize Z-scores following  
    experimentalist indications

Note: Readouts were available for both main and background 
signal
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Dataset characterization: Bayer AG HTS historical data

Assays space:
FLINT:  56 Blue  , 23 Green, 8 Red
FRET: 16
TR-FRET: 10
Bioluminescence: 76

PCA comparing the training set chemical space (BLUE) 
and the DrugBank approved drugs space (RED) 

Chemical space

Cell-based: 88

Biochemical: 99
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Data collection and preprocessing: PubChem test set

10’031 unique structures

Distribution of compounds’ maximum Tanimoto 
coefficient computed between the training and the 

PubChem test set.

Tanimoto coefficient distribution

Median: 0.53

Interquartile range: 
0.42 - 0.63



Labeling compounds likely to 
interfere with fluorescence-
based assays
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Labelling compounds likely to interfere with the assay 
technology: compute interference metrics

Activity-to-tested ratio (ATR) 
reloaded Noise-to-active ratio (NAR) Fisher exact test

For the compound contingency table X:

0 1

Fluorescent 
assays a b

Other 
technologies c d

1. Compute compounds p-values applying 

    Fisher –exact test 

2. Apply threshold to obtain binary 

    interference labels
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Labelling compounds likely to interfere with the assay 
technology: compute binary labels

Percentage of likely interference compounds
(thresh)

2% 5% 10% 20%

ATR 5.00 3.00 1.00 0.90

NAR 0.10 0.07 0.04 0.03

p-value from Fisher’s 
exact test 0.01 0.07 0.17 0.35

Thresholds applied to compute binary interference labels

Rationale applied to interference metrics to compute binary labels
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Development of machine learning classifiers for assay 
interference prediction

mol

GetMorganFingerprintAsBitVect

Morgan2(nbits=2048)

RFC

MLP

BalancedRandomForest 
(imbalanced-learn)
BayesOpt 50 iterations
Hyperparameters optimized:

● n_estimators
● max_depth
● bootstrap

MLP (PyTorchLightning)
ELU activation function
BinaryCrossEntropyLoss
WeightedRandomSampler
Optuna 50 iterations
Hyperparameters optimized:

● n_layers
● n_units
● dropout
● learning_rate
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Model performances on the Bayer AG test set
RFC MCC for different labelling 

methods
MLP MCC for different labelling 

methods
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Model performances on the PubChem derived test set

PrecisionMCC RecallROC-AUCMODEL

HitDexter3.0 0.25

0.34

0.45

0.82

0.94

0.23

0.34

0.75

0.66

0.84 0.18 0.84

ChemFluo

FI-RF
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Analysis of performances on the PubChem derived test set

TMAP of PubChem test set compounds colored by 
PubChem activity label (BLUE non-autofluorescent, 

RED autofluorescent)

TMAP of PubChem test set compounds colored by 
predicted interference label (BLUE non-interfering, 

RED interfering)
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Conclusions

• Single-dose HTS data can be used with very little preprocessing to address assay interference
• We show that statistically derived labels can be used to train ML models for prediction of assay 

interference (best model reaching MCC=0.47 on the internal test set)
• The interference labels obtained using ATR, NAR, and Fisher exact test can approximate 

experimental evidence
• Our best model outperforms existing methods for the prediction of autofluorescent compounds 

(MCC=0.45 on the external test set)
Further experiments
• Explore if the models can predict other type of interference (e.g. aggregation)
• Extend the approach to other assay technologies


