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Drug discovery in the age of Big 40+B of purchasable

Data: need for new methods and chemicals!t

careful, automated curation!
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Cherkasov, A. The ‘Big Bang’ of Chemical Universe. Nature Chemical Biology, 19, 667-668
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T . . discovery. Nature Mach. Intel. 2022 4, 211-221
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00832-0




Typical elements of QS[A,P,T]R

modeling: issues at every step

« Experimental Data = pain
— Structure
— Activity

 Model Validation

— Descriptors
— Statistical/machine learning techniques

* Prediction (i.e., data imputation)
« Experimental confirmation of predictions

* Reliable models to enable decision support
(both in research and for regulatory approval)



Published guidance on model development
and validation: The OECD Principles

To facilitate the consideration of a QSAR model
for regulatory purposes, it should be associated with the
following information:

> a defined endpoint
> an unambiguous algorithm;

> a defined domain of applicability

> appropriate measures of goodness-
of-fit, robustness and predictivity

> a mechanistic interpretation, if possible;
>Should be added: data used for modeling
should be carefully curated



QSAR Modeling Workflow: the —
importance of rigorous validation Experimental

C Datasets
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Modeling methods T
| ' Combi-QSAR
K-Nearest Random Support Vector .
Neighbors (kNN) || Forest (RF) Machines (SVM) modeling
D ¢ scriptorns Tropsha, A. Best Practices for QSAR Model Development, Validation,
Dragon MOE and Exploitation Mol. Inf., 2010, 29, 476 - 488

Fully implemented on CHEMBENCH.MML.UNC.EDU



21 "how not to do QSAR” principles

Table 1. Types of error in QSAR/QSPR development and use.

Relevant OECD

No. Type of error principle(s)
1 Failure to take account of data heterogeneity
2 Use of inappropriate endpoint data
3 Use of collinear descriptors 4,5
4 Use of incomprehensible descriptors 5
5 Error in descriptor values
6 Poor transferability of QSAR/QSPR
7 Inadequate/undefined applicability domain
8 Unacknowledged omission of data points
9 Use of inadequate data
10 Replication of compounds in dataset
11 Too narrow a range of endpoint values

12 Over-fitting of data
13 Use of excessive numbers of descriptors in a QSAR/QSPR

NEBEEEBRELERERWWWWWIRNRDNDN——

14 Lack of/inadequate statistics

15 Incorrect calculation

16 Lack of descriptor auto-scaling

17 Misuse/misinterpretation of statistics

18 No consideration of distribution of residuals
19 Inadequate training/test set selection

20 Failure to validate a QSAR/QSPR correctly
21 Lack of mechanistic interpretation

4
Dearden JC et al., 2009, SAR and QSAR in Environmental Research, Vol. 20, Nos. 3—4, April-June 2009, 241



Critical assessment of published
QSAR models

* |ssues
— Primary data is not curated
— Correlations are inflated

— QOutliers are abundant
— Statistical metrics of models are often inadequate

— Published models are not validated
— Mechanistic interpretation is often derived from bad models

« Challenge: develop best model development and publishing practices

for cheminformatics papers
— The ideal bad cheminformatics paper is the one that was not accepted for
publication!




Some reasons why QSAR models
may fail

* No external validation

 Incorrect selection of an external test set

 Incorrect division of a dataset into training and test sets

 Incorrect measure of prediction accuracy

* Not all statistical criteria are used to estimate predictive power of a model
« No applicability domain

 Incorrectly defined applicability domain

 No Y-randomization

« Leverage (structure) and activity outliers are not removed

* Modeling set is too small




Some reasons why QSAR models may falil:
Misiniterpretation of the Models’ Predictive
ADbility, lack or incorrect external validation

« Johnson, S.R. The Trouble with QSAR (or How | Learned To Stop Worrying and
Embrace Fallacy). J. Chem. Inf. Model. 2008, 48, 25-26: S
"The common practice has been to select the model with the best fithess IH
function score and predict a small group of observations that were T
withheld at the beginning. All too often, the model development process s
stops here, or, worse, the validation set is poorly predicted, and models _
are iteratively tested until one predicts this set of compounds well."

A typical example:
A dataset is divided into a training and test set
Multiple QSAR models with high g2 values are built using training set
QSAR model with the highest R? for the test set is selected

Selected model could have poor predictive ability for other compounds

Additional EXTERNAL EVALUATION SETS are necessary



Some reasons why QSAR models may

fail: Incorrect division of a dataset into training and
test sets

Typical division of a dataset into training and

_
|
test sets: random =

— Undesired outcome:
« some compounds of the test set can be out of the applicability domain
* large activity gaps in the training or test set; activity outliers
Requirements for training and test sets:

— Compounds with maximum and minimum activities of the dataset should
be included into the training set (important for methods that cannot
extrapolate activities, e.g., KNN).

— Large activities gaps are not allowed neither in training nor the test set.

— Each compound of the test set should be close to at least one compound
of the training set.



Some reasons why QSAR models may fail: using
incorrect metric to assess classification QSAR
accuracy for biased datasets:

« A typical target function (Classification Rate):
CR=N(classified correctly)/N(total)
A dataset:
Class 1: 80 compounds; Class 2: 20 compounds
Model: assign all compounds to Class 1.
Target function: CR=0.8
The model appears to have high classification accuracy
- Better target function:

CCR (or BA) =0.5x(Sensitivity+Specificity)
In the above example, CCR = 0.5 K — the number of classes

 General formula: 1 K. pjeor Nor — the number of compounds of
CCR :_z k z class k assigned to class k
tota

N fotal — total number of compounds of
class k

» For categorical response variable, target functions can depend also on the absolute
errors (differences between predicted and observed classes).



How to define predictive accuracy of a QSAR

model

b=y-—

7 y =0.3154x + 3.4908 7 y =3.1007x - 10.715
. R?=0.9778 6 B2 = 0.9778 . y=1.2458x- 18512
7/ R“ =0.8604
s’ s =
§ | / g i gl %
§ 4 /// S 4 /// §
7/ < y = 0.9383x 2 // y = 1.0023x y = 0.9796x
2 e R = -3.3825 0.5238 Ro? = 0.8209
0 T . : . , 0 T T . . .
0 2 4 6 8 10 0 2 4 6 8 10
Predicted Observed Predicted
Regression Correlation Regression Coefficients of
coefficient through determination
y =a'y+b the origin
= 2 G-
2 D@ 209G YO =k'y =1- :
R | B D Y] 5 > (- y)
V.Y,
(v, = NG = 5) DA
Z Z yl '2 Z (yl 0
> 5=y R:=1-
- CRITERIA > (- y)
@’U:y—dy

y' =ky

M

ylyz

i<




Some reasons why QSAR models may fail: No
Applicability Domain is defined for the Model

« Compounds which are highly dissimilar from all compounds
of the training set (according to the set of descriptors
selected) cannot be predicted reliably

Lack of the AD:
- unjustified extrapolation
- wrong prediction
Typical situation:

a compound of the test set for which error of prediction is high is
considered as outlier

HOWEVER: a compound of the test set dissimilar from all
compounds of the training set can be by chance predicted
accurately

s~y §]
=
l y



Applicability domain of QSAR models

Descriptor 2

Descriptor 1

For a given model, two parameters are
calculated:

- <D> : average Euclidian distance between
each compound of the training set and its k
nearest neighbors in the descriptors space;

- s, . standard deviation of the distances
between each compound of the training set
and its k nearest neighbors in the descriptors
space.



Applicability domain of QSAR models

Descriptor 2

For a given model, two parameters are calculated:

- <D,> : average euclidian distance between each
compound of the training set and its k nearest
neighbors in the descriptors space;

- sy . standard deviation of the distances between
each compound of the training set and its k nearest

Descriptor 1 neighbors in the descriptors space.

O = NEW COMPOUND

For each test compound i/, the distance D, is
calculated as the average of the distances between
i and its k nearest neighbors in the training set.

INSIDE THE DOMAIN OUTSIDE THE DOMAIN

The new compound will be predicted by
the model, only if :

Will be predicted Will not be predicted Di < <D> + Zxs

by the model by the model

with Z, an empirical parameter (0.5 by default)



Applicability domain vs. Erediction

accuracy (Ames Genotoxicity dataset)
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Some reasons why QSAR models may 5
fail: Y-randomization test is not carried out

* Y-randomization test:
— Scramble activities of the training set
— Build models and get model statistics.
— If statistics are comparable to those obtained for models built with real activities
of the training set, the last are unreliable and should be discarded.

Frequently, Y-randomization test is not carried out.

.‘Tm aooa0e
I

Y-randomization test is of particular importance, if there is:
- a small number of compounds in the training or test set
- the response variable is categorical



Activity randomization: model robustness

Struc.1 Pro.1 /\
Struc.2 Pro.2 .
Struc.3 Pro.3 06 - /.//H*‘—H\A
. 054 The lowest g2 = 051 in the top 10 models |
04 -
S 03-
Struc.n Pro.n
024 The highest g2 =0.14 for randomized datasets
l 0.1 1
Struc.1 Pro.1 0 lN.\W\\‘”'_‘_\,
-0.1 4 , , ,
Struc.2 Pro.2 0 40 50 60 70
Number of Variables
Struc.3 Pro.3

Training set with real property values is
expected to produce much higher g2 values
than the same set with randomized property

Struc.n Pro.n values.




Detection and removal of outliers

 Many potential outliers can be detected in the dataset
prior to QSAR studies, but typically this is not done.

* Two types of outliers

- Leverage outliers: compounds dissimilar from all
other compounds in a dataset in the chemistry space.

-Activity outliers: compounds similar to some other
compounds Iin the dataset, but with activities quite
different from those of their nearest neighbors.



Why QSAR models may fail:

iInsensitive descriptors.
ldentical g (CoMFA*) of 0.53

ASP_65

LYS_134

'HEAD-TO-TAIL' ORIENTATION 'HEAD-TO-HEAD' ORIENTATION
CORRECTED TRADITIONAL

Optimal Traditional

Orientations of androgen (
) and estrogen (estradiol shown in green)
within human SHBG steroid-binding site

A. Cherkasov, JMC, 2008



Why QSAR models may fail:
Incorrect structures

« “Slight errors in chemical structures, such as misplacing a CI
atom or swapping hydroxy and methoxy functional groups on a
P
|
\
=

multiple ring structure, can result in significant differences in the
accuracy of the prediction for those chemicals.

Young et al, Are the Chemical Structures in Your QSAR
Correct? QSAR Comb. Sci. 27, 2008, No. 11-12, 1337 — 1345

« Data Curation
— Removal of inorganics, salts, and mixtures
— Aromatization and 2D cleaning
— Normalization of carboxylic, nitro, etc. groups
— Elimination of duplicates
— Standardization of functional group representation
— Manual cleaning
— ... and then, look at ‘em again!



TheScientist
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Dealing with Irreproducibility

Researchers discuss the growing pressures that are driving increases in retraction rates at

AACR.
By Jef Akst | April 8, 2014
of
) 3 Comments @ m 38| Pinit g+ 2 [ Link this stumble [J Tweet this :d
128 of
s Recent years have seen increasing numbers of
oy i 4 —— retractions, higher rates of misconduct and fraud, ‘ Ba rk ted
- - )it o 3 —
eIy Rl P and general problems of data irreproducibility,
D BT | spurring the National Insttutes of Hea ) and ﬂgates
,.n‘f,.,‘;_v‘v' - others to launch initiatives to improve the quality of
“‘2’.\ R R “‘:':r:ﬁ research results. Yesterday (April 7), at this year’s
=7 “ - - . I
=3 b s~ American Association for Cancer Research (AACR) lu Sezen's
S OO . meeting, researchers gathered in San Diego, at Columbia.
California, to discuss why these problems to come
to a head—and how to fix them. pond to
"We really have to change our culture and that will s unlabelt.ed
not be easy,” said Lee Ellis from the University of ompound in
ACCELERATING PROGRESS IS IN OUR GENES. See Deeper. Reach Further.
~osted in full
DOI: 10. 100

when we receive It. 24
wmmmmmmmms have In the last decade numerous attempts have been made to




Data dependency and data quality
are critical issues in QSAR

o Cheminformaticians are at the mercy of data providers. Prediction
performance of (Q)SAR models could depend strongly on the
quality of input data (both structures and activities).

,Both chemical and biological data in a dataset may be inaccurate
and in need of thorough curation

, The number of published QSAR models that were poor or not too
successful due to data quality issue is unknown but possibly large

, Often considered trivial, the basic steps to curate a dataset of
compounds are not so obvious especially for beginners.

25




Presence of ERRONEOUS OR
WRONG STRUCTURES

Presence of MISPRINTS
AND WRONG NAMES

Mﬁ 2 ERRORS in the calculation
) N of DESCRIPTORS

PN NN |
s QSAR MODELS 2?7

1O

O,

A """ = Presence of DUPLICATES

3": @J A©

Ha T /,:" Presence of MIXTURES

g\[ Presence of SALTS

Etc.




Chemical Structure Curation

Chemical structures should be cleaned and standardized —
(duplicates removed, salts stripped, neutral form, canonical tautomer, etc)
to enable rigorous model development

0
m_!%_g[r_moval of mixtures, inorganics
(and eventually organometallics)
o - .S't.r'u_ctural conversion
Cleaning/removal of salts
o i . Normalization of
specific chemotypes | /N+\CH3 N on
o Treatment of
L * Pyridostigmine Bromide
(o]
(o]
. . i H;C ‘
................ Analysis/removal of duplicates HyC ll\ . oH
| — Manual inspection . o
y @ @
CURATED DATASET

*Fenoprofen Sodium

Muratov, Fourches, Tropsha. Trust but verify. JC 27
J. Chem. Inf. Model. 2010, 50, 1189-1204.



QSAR modeling of
nitro-aromatic toxicants

-Case Study 1: 28 compounds tested in

rats, log(LD50), mmol/kg. Five different leqgitimate representations
-Case Study 2: 95 compounds tested of nitro groups.

against Tetrahymena pyriformis, 1 : e A .
log(IGC50), mmol/ml. NP o~

U~§ [ l// w V< P \_/.\\ //U Q ~ +§ O YV +? U

Data curation affects the accuracy © @ ©
(up or down!) of QSAR models \, J //

Even small differences in structure representation can ©

lead to significant errors in_prediction accuracy of

models
Artemenko, Muratov et al. SAR QSAR 2011, 22 (5-6), 1-27. 28




Looking for biological data
errors/uncertainties in databases

 \What kind of errors do we see?

* When replicate values (of target, ligand, and activity type)
appear in the literature, how much do they differ by?

* Does wrong information arise in the laboratory or does it
creep in during publication?

29



Experimental data quality:
Comparison of the ToxCAST (Phase |)
in vitro Assay Results for Duplicates

500 7 81 87 33 239 48

;Ic())p()jyon_jl_bu yicarbamate 071 073 018 053 049 0.89 0.15
Bensulide 064 009 071 04 0.69 0.95 0.04
Chlorsulfuron 024 N/A N/A 04 N/A N/A 0.1
Dibutyl phthalate 055 N/A 062 0.51 0.7 0.81 0.1
Diclofop-methyl 0.36 1 0.89 0.15 N/A -0 -0.1
EPTC 013 N/A N/A -01 N/A N/A 0.33
Fenoxaprop-ethyl 0.47 N/A 0.56 0.59 0.31 0.35 0.01
Prosulfuron 055 N/A 068 008  N/A 1 0.4
*]\"ICC= TP xTN —FP x FN

V(TP + FP)(TP + FN)(TN + FP)(TN + FN) 30



ChEMBL Statistics

Used ChEMBL 14 — released 18 July 2012
— 1,384,479 compound records

— 1,213,242 distinct compounds

— 644,734 assays

— 10,129,256 bioactivities

— 9,003 targets

— 46,133 documents

Primarily covers MedChem Literature
* Adds annotations for target data

 Successor to SARLite commercial database

31



Manual Curation (following
several automated steps)

* |nput: 190,068 compound-target measures in
pairs of papers
— Used values as published in ChEMBL
— Converted to standardized pK, values

— Semi-automated (based on units and type of
value reported)

« 23,956 failed to be automatically converted
— Mostly Log K, or —Log K; values but others

— Manually examined papers representing ~70%
and hand converted affinity value, except when
data was being recycled/recited

* Final: 178,317 total replicate pairs of values

32



Only Replicates > 1% difference

Number of values

25000+
20000+
15000#
10000+

5000+

0

What if we remove all
the exact duplicates?

0

12

33




A Recurrent Pattern

250001

20000+

Note the peaks at integral pKi differences

15000

10000+

Number of values

5000+

34



Non-standard Units Used

J. Med. Chem. 2000, 43, 3233—3243

Option

GRid-INdependent Descriptors (GRIND): A Novel Class of
Alignment-Independent Three-Dimensional Molecular Descriptors

Manuel Pastor,” Gabriele Cruciani,*' Iain McLay,’ Stephen Pickett,’ and Sergio Clementi’

Laboratory on Chemometrics, Department of Chemistry, University of Perugia, Via Elce di Sotto 10, 06123 Perugia, Italy,
and CADD Department, Rhone-Poulenc Rorer, Dagenham, Essex RM10 7XS, U.K.

Table 2. Series of 10 Glucose Analogue Inhibitors of Glycogen
Phosphorylase

OH

HS&E\/RB

HO Ra

substituent at C1 position
Ra Rf pKi (mM)

=
=]

1 OH H \?{;;/
2 C(=O)NH; H .

3 H C(=O)NH; 3.36

1 H COOCH3 2.55

5 H CH,CN 2.05

6 H NHC(=0)NH 3.85

7 C(=O)NH, NHCOOCH; 4.80

35



Non-Ki measures given as Ki

Design, synthesis and structure—activity relationship studies of
hexahydropyrazinoquinolines as a novel class of potent and
selective dopamine receptor 3 (D) ligands

These numbers made
it into ChEMBL, too.

= Departments of Internal Medicine and Medicinal Ch
Drive, Ann Arbor, MI 48108-0934, USA /

Min Ji#, Jianyong Chen?, Ke Ding?, Xihan Wu#, Judith Varady=, Beth Levant®, Shaomeng Wang® -

rat brain

Table 1. Binding affinities at the D,-like, D,-ike and D; receptors in binding assays u

w

™

w0

° Department of Pharmacology, Toxicology, and The

7417, USA

Compounds K = SEM (nM)

h:tpndid:wor_w Cl 61 'Zi--it_‘mcl-ZOC'S»Cﬁ 037, Howto D,-iike PHJSCH 23390 D,-iike [PH]spiperone D; [° D,-like/D-
5a 7947 £ 597 3887 + 664 74
5b 8893 + 568 3643 = 459 2755 + 475 3.2 1.3
5c 904 100 24330 304 £ 53 3.0 0.8
5d 2467 + 303 852 £ 49 381+ 59 6.5 22
9a >100,000 >100,000 22,967 = 6346 >4 >4
9b 356 £ 47 906 = 190 2523 + 692 0.1 0.34
9c 258 + 52 22021 22:86 12 10
10a 1218 £ 145 1389 = 111 1650 + 424 0.7 0.8
10b 152,567 £ 17,284 2443 + 403 1535 £ 81 10 1
10c 791 = 187 1568 = 338 1824 44 87
12a 4602 + 287 762 = 51 58%13 793 131
12b 250,000 >250,000 244 £ 59 >1000 >1000
12¢c 5802 + 422 1125 £ 207 45+7 130 25
12d 6051 = 570 258 = 41 26204 >2000 99
36



Ignorance of Biological
Complexity

(8aa,12aa,13aa)-5,8,8a,9,10,11,12,12a,13,13a-Deca-
hydro-3-methoxy-12-(methylsulfonyl)-6 H -iso- J. Med. Chem. 1989, 32, 2034-2036
quino[2,1-g][1,6Jnaphthyridine, a Potent and ’
Highly Selective a,-Adrenoceptor Antagonist'
0,a? a,b? a,c?
Table 1. Radioligand Binding and Functional Results__
ligand binding, pK¢ [/

compd [*H]prazosin (a,) [3H]yohimbike (as) selectivity®

8a 4.99 % 0.10 9.18  0.1—" 15000

8b 529 £ 0.10 9.45 £ 0.16 15000

8¢ <5 6.32 = 0.08 >50

idazoxan 6.10 = 0.08 7.96 £ 0.04 72

yohimbine 6.40 £ 0.03 7.90 £ 0.03 32
asa 10218 8b 32635 359172 pK; 9.45
asb 10218 8b 32635 359172 pK; 9.45
a,C 10218 8b 32635 359172 pKi 9.45
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No Units at All

Development of High-Affinity 5-HT; Receptor Antagonists. 2. Two Novel Tricyclic
Benzamides

R. D. Youssefyeh,* H. F. Campbell, J. E. Airey, S. Klein, M. Schnapper, M. Powers, R. Woodward, W. Rodriguez,
S. Golec, W. Studt, S. A. Dodson, L. R. Fitzpatrick, C. E. Pendley, and G. E. Martin

Rhone-Poulenc Rorer Central Research, 640 Allendale Road, King of Prussia, Pennsylvania 19406. Received August 23, 1991

Table II. Antagonism of [*H]JGR 65630 Binding by Various

Agents e

compd n° —CK, £3 SEj compd n® K, £ SE
8 1 1.07T=U057 24 1 >100
9 2 0.74 £ 0.14 25 1 >100
10 7 017 £ 0.02 26 1 >100
11 3 877£1.82 27 1 29.6 £ 5.7
12 3 205012 28 1 >100
13 2 285116 BRL 43694 3 1.72 £ 0.03
18 1 030%0.14 GR38032F 3 6.16 £ 2.1
19 1 342+084 ICS 205-930 5 2.1 £ 0.50
20 1 196055 MDI72222 3 21.12 £ 8.6

& 151 + 0.36

“n = number of experiments. On each experiment compounds
were tested in six-point competition experiments with triplicate
replication.
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No Citation For Data Sources

Molecular docking and 2D-QSAR on 2-(oxalylamino) benzoic acid and its analogues as protein tyrosine phosphatase 1B inhibitors
Pages 5521-5525

Mei Zhou, Mingjuan Ji

[_‘v Show preview /T_ PDF (231 K) Related articles | Related reference work articles

Graphical abstract
The figure showed the inhibitor modification information de

ved from CoMFA model. Increasing bulk inside green regions and removing bulk from
yellow regions favor the inhibitory 3ctivity; increasing negative charge in rad regions and increasing positive chargs in blus regions favor the
inhibitory activity.

a b

yellowl

blue3 Table 1. Structure of nhibitors for CoMFA and FlexX
»
The contour plots of CoMFA steric fields (a) and electrostatic fields (b) =
n\
7 A
N
- > '
. H 018
o 0 =
onrn
1A~1L
1

Compound Ar® R H) pK (calcd) Residue Total score (kJ mol™)
1A e H 3.720 0919  -154.03
1B a H 3.045 -0.086 -126.82
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Summary of published data
qguality analysis

A lot of the replicates in the literature aren’t actually
Independent determinations

Many errors come from careless specification or
interconversion of units

91% of the data are single reported measurements

Modeling studies often are not explicitly identified as
such

ChEMBL 15 and going forward have started to
address these issues

This observations suggest new challenges to employ
cheminformatics approaches for biological data
curation

40




ChEMBL Statistics:
experimental uncertainty

!
Consensus QSAR models 1 %‘(}7
predict molecular agtivities L, &kl o
with a compound-specific e
. |o‘ .:.'.:'.)_o. ..'-‘:.u
UnCe rtalnty ..,\..,':%\?:"3';‘:%;5:"5:° O
L Wit
e e ol sletag
o]"oi," ,:.5-.\'#;:'.3 e
IR GRS
| H' PRGSO T | |
2.0 1.0 '!:j'-"""::‘f‘-’:‘..“: 5| | 10 0 2l
TR Ol ™ .
oG However, typically, we tend to

5 Jlf%%" ' 101 Ignore the experimental
i uncertainty/variability associated
with each compound.
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Recent curation effort: creation of a

derivative database of antiviral
compounds found in ChEMBL

|dentify all

W

Define

antiviral assays in . Biological and Specialized . Actives/Inactives

ChEMBL for Chemical Curation Curation Efforts

. ) from Assay Results
viruses of interest

Experimental Select Hit Generate Matrix
testing Compounds (Drugs x Assay)

—

e — — —

Martin, H. et al, Antiviral Res., 2023 Sep;217:105620.



Seems easy! Just look it up in the
ChEMBL database... right?

BUT: Grave issues with ChEMBL’s antiviral assay
ontology and annotation...

L >

Assay Type Assay Conditions

Total Time Spent Fixing These Issues:

~75 hours



Assay Ontology Issues: Assay

Descriptions .
Inclusions: virus, cell, assay, time, concentration, assessme

>

Antiviral activity

Antiviral activity determined as inhibition

Antiviral activity determined as of SARS-CoV-2 induced
against SARS- inhibition of cytotoxicity of VERO-6
CoV-2 SARS-CoV-2 in cells at 10 uM after 48
Hela cells nours exposure to 0.01

MOI SARS CoV-2 virus
MOST COMMON by high content imaging

Virus + 1-2
Inclusions

Virus Info Only All Inclusions



Heavy curation efforts: for instance,
missing cell types in phenotypic assays

14% of all phenotypic assay results
were missing the cell-type from the designated field

Time spent: ~150 hou

Cell Type

® Found in Assay Description
= Completely Missing

Total time spent: ~200 Hours

Time spent: ~50 hourg




BAO Mislabeling Impacts Data
Accessiblility

Using the "BAO Assay Type™ as a filter to
search ChEMBL for cell-based assay's for
my viruses of interest would have cost
99.44% of all collected data. It was
effectively HIDDEN!

Total time

spent:




Summary of antiviral compound
activity in curated subset from :
ChEMBL

32,515 compound entries x 13 viruses

Thresholds

% inhibition > 50
EC50 < 10 uM
IC50 < 10 uM

- Active E Inactive

Molecule ChEMBL ID

Inconclusive Not tested

Viruses



New Testing Recommendations

Criteria Compound Profile Example

Compound | Phenotypic | Phenotypic Untested INESEE
ID Activit Inactivit Phenotypic Target-
d Y ol Based
All

Active in 1+ phenotypic Dengue 1: Yellow Fever;

assay(s) in 2+ different Compound X ik None West Nile;
wruses Ka Dengue 2-4
Hypothesis Testing Recommendations
Broad- 1. Retest nominated compounds against Dengue 1 and
Spectrum for Zika to ensure assay compatibility
Viral Family 2. Test against Dengue 2-4, West Nile, and Yellow Fever

due to high conservation amongst flavivirus proteins



Flavivirus Screening Results

« 73 compounds tested at DENV 2&4 (some with reported DENYV activity,
some with activity at other flaviviruses)

* Total of 43 unique compounds (+4-5 controls) had significant
activity <50% RLU):

# of compounds to Ll
Virus and Assay Concentration .p compounds
active tested

DENV2nLuc (% RLU) 1uM 13 17.8%
DENV4nLuc (% RLU) 1uM 10 13.6%
DENV2nLuc (% RLU) 10uM 46 63.0%

DENV4nLuc (% RLU) 10uM 40 54.7%



Finally! Small Molecule Antiviral Compound m

Collection (SMACC)7

Drug-Assay Compounds
Palrs

12,221
Assays

32,515

1,119

El The picture can

t be displayed.

*https://smacc.mml.unc.edu.

*Martin, H. et al, Antiviral Res., 2023 Sep;217:105620.



Analysis of one publication: CYP data

Predictive Models for Cytochrome P450 Isozymes Based on
Quantitative High Throughput Screening Data

Hongmao Sun,*" Henrike Veith,’ Menghang Xia," Christopher P. Austin," and Ruili Huang'
B CONCLUSION

"National Institutes of Health (NIH) Chemical Genomics Center, NIH,

ABSTRACT: The human cytochrome P450 (CYP450) isozymes
are the most important enzymes in the body to metabolize many
endogenous and exogenous substances including environmental
toxins and therapeutic drugs. Any unnecessary interactions between
a small molecule and CYP450 isozymes may raise a potential to disarm
the integrity of the protection. Accurately predicting the potential
interactions between a small molecule and CYP450 isozymes is highly
desirable for assessing the metabolic stability and toxicity of the
molecule. The National Institutes of Health Chemical Genomics
Center (NCGC) has screened a collection of over 17,000 compounds
against the five major isozymes of CYP450 (1A2,2C9,2C19, 2D6, and

3A4) in a quantitative high throughput screening (qHTS) format. In
this study, we developed support vector classification (SVC) models

SVM cdlassification models have been built for the five most
important isoforms of CYP450 (1A2,2C9, 2C19, 2D6, and 3A4) |
based on a large qHTS data set with over 6000 compounds
available for both model training and testing. The five CV
optimized SVC models built by using the atom typing molecular
descriptors exhibited consistently high predictive power when
applied to the equally populated test sets with accuracies between
0.85 and 0.93, as measured by the AUC of ROC plots. The results
indicated that the atom typing descriptors generated from a large,
high quality data set were capable of feeding information rich
learning materials to the SVM learner. Useful information of
structural features was derived from feature importance analysis
for each isozyme of CYP450. The privileged structural features
that could result in inhibitory and stimulatory activity against
different CYP450 isozymes can serve as valuable guidelines in the
drug discovery process.

for these five isozymes using a set of customized generic atom types. The CYP450 data sets were randomly split into equal-sized
training and test sets. The optimized SVC models exhibited high predictive power against the test sets for all five CYP450 isozymes
with accuracies of 0.93, 0.89, 0.89, 0.85, and 0.87 for 1A2, 2C9, 2C19, 2D6, and 3A4, respectively, as measured by the area under the
receiver operating characteristic (ROC) curves. The important atom types and features extracted from the five models are consistent
with the structural preferences for different CYP450 substrates reported in the literature. We also identified novel features with
significant discerning power to separate CYP450 actives from inactives. These models can be useful in prioritizing compounds in a
drug discovery pipeline or recognizing the toxic potential of environmental chemicals.

J. Chem. Inf. Model. 2011, 51, 2474-2481

91




Dataset Curation summary

CURATED DATASET

and mixtures

Structural conversion, 17121 compou nds

cleaning of salts

....Normalization of 17121 compounds

specific chemotypes

Treatment of

--------- 17121 compounds

tautomeric forms

Fourches D, et al. J Chem Inf Model. 2010 50(7):1189-204.

52



NCGC dataset

analysis of duplicates
* Out of 1280 duplicate couples :

— 406 had no discrepancies-no values or no values for
comparison

— 874 had biological profile differences

* A total of 1535 discrepancies were found in the 874
couples of duplicates:

# of

: : 154 363 426 422 170
discrepancies

53



Neighborhood Analysis for Duplicates

17,000 compounds screened against five major CYP450 isozymes.
1,280 pairs of duplicates couples were found (874 had different bioprofiles)

D e ©
Tocris-0740 SID Supplier 2C9 1A2 3A4 2D6 2C19
CID_6603937 11113673 Tocris 4.6 44 -46 -62 -45 S \//‘\

CID_6603937 11111504 Sigma Aldrich -4.4

neighbors  Similarity SID Supplier 2C9 1A2 3A4 2D6 2C19 o
6604862 0.98 11114071  Tocris -4.5 -5.5 E_I)
6604106 0.98 11112029 Sigma Aldrich -5.1 O@ N
N\\ﬂ”:“//(w:
6604846 0.98 11114012 Tocris O@ X N
N\\qm//sz
6604136 0.95 11112054 Sigma Aldrich -48 59 Qﬂ O
6604137 095 11113764  Tocris -44 -47 -45 G 7 o4

g



Biological data curation workflow

Error
Rate @ i Chemical Curation

experimental variability

Exclusion of unreliable
data sources

Detection and Verification
of Activity Cliffs

Predictions
Identification and correction

of mislabelled compounds

Dataset Size
Curated Set (# of Records)

Fourches et al., Curation of Chemogenomics Data. Nature Chem. Bio., 2015, in press.




Notes on the importance
of data curation

o The curation of chemical data is critical prior to any
cheminformatics analysis and modeling. Difficult cases
require human interventions and cannot be fully automated.

o Prediction outliers may be due to structural outliers, real
activity cliffs or mislabeled compounds. Many of them can still
be detected and removed prior to modeling studies boosting
the reliability of QSAR model.

o Rigorously developed QSAR models can be used to correct
erroneous biological data associated with certain
compounds.

Free and open-source QSAR-ready workflow for automated standardization of chemical structures in

support of QSAR modeling. Mansouri et al, ] Cheminform . 2024 Feb 20;16(1):19. doi: 10.1186/s13321-024- o6
0081/.-2
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sense to model any SAR data?

Dataset Modelability



The Concept of Modelabillity

» We often fail to build a predictive QSAR model.
However, it may be possible to evaluate
modelability of the dataset prior to QSAR study.

K

1 N‘same
MODI = — Z ‘
K N’total

=1 I

where K is the number of classes (K = 2 for binary data sets),
N;*™ is the number of compounds of i-th activity class that

have their first nearest neighbors belonging to the same activity

class i; N'°® is the total number of compounds belonging to the
class i.

*Golbraikh et al. Data Set Modelability by QSAR. J Chem Inf Model. 2014, 54, 1-4 o8



Prediction of dataset modelability

QSAR_CCR

1

0.9 -

0.8 -

0.7

0.6 -

0.5 -

0.4

NON-MODELABLE MODELABLE
y=0.57x +0.33
R?=0.66
< @
y = 0.88x + 0.07
O -~
8‘0 ¥ R2=0.83
o F Sy 08
3 805 € O
=
CO* X O
=
=
0.4 0.5 0.6 0.7 0.8 0.9
MODI
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Modelability and Structural Dissimilarity

1 7 MODI
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

o

ﬁ 10 20 30 40 50 60 70 80 90/\100
. ) Datasetrank
Highest similarity Lowest similarity

*Golbraikh et al. Data Set Modelability by QSAR. J Chem Inf Model. 2014, 54, 1-4 60



Can QSAR models be interpreted in terms of
significant functional groups (chgmical alerts?)

p-value < 0.05
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Important observation: chemical features never act in 1solation from

the rest of the structure! Explanation of multivariate models by one or
few descriptors 1s typically non-sensible
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Model interpretation based on Chemistry-
Wide Association Studies (CWAS)

Patients
Phenotype (disease/no disease)

Single Nucleotide Polymorphisms
(SNIPe)

Y NS i

G
7 A
http://www.broadinstitute g/ ducation/glossary/snp
LPA ADAMTS7
1 2 3 4
Lusis A, Genetics of atheros T d G t 2012 267 275

|dentify SNPs/loci associated with
phenotype
Predict phenotype from SNPs

Compounds
Activity (active/inactive)

Chemical descriptors (e.g.
fragrrm“*f“ 0

'\ /

w@*f >
/
@gﬁ\

http://www.aldrichmarketselect.com/support/similarityOverview.asp

|dentify substructure associated
with activity
Predict activity from structure
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Lu

CWAS: develop and employ QSAR models
using GWAS framework

Significant fragments

\ v
// \

/

CWAS: study how c

Significant fragments
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J \

Structural alerts

(combined fragments)
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Co-occurring fragments
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Mutually influencing
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Modeling and identifying important fragments

Ames data set
5,439 compounds 967

2,121 mutagenic fraMnts

3,318 non-mutagenic

Chemical curation
Remove invariant,

highly correlated
fragments
Full model Reduced model
(967 fragments) (76 fragments)
Specificity 0.92 +0.009 0.92 +0.009
Sensitivity 0.78 £0.005 0.81 £0.005
Balanced Accuracy 0.85 £0.005 0.87 £0.005
AUC 0.91 £0.004 0.94 +0.003

Results from 5-fold external cross validation 64



Nitro’s mutagenic effect is:
iIncreased by furan (synergism)
decreased by primary alkanes

Synergistic interaction N 0

L \ 7

Antagonistic (\ce I'>>—N\\

interaction ‘(\;‘\\)e A 0 o 1‘
.\ \ 0 :
C-C-C-H ‘\S‘\C N, 100% mutagenic
e(® 79:0
SN 6
g + 94% mutagenic
O =N= 0 79:5
X
\y
i 84% mutagenic (“penetrance”)
620:118
CEEN"O) +
oo C-C-C-H H

o, : (0]
'4/72(8 29% mutagenic - \—\\ /

80y, : 785:1884 N
O/Sf/b S
) 0 .

Number of Number of '7(/@/7 69ﬁ>1fggffjgemc ‘1’
mutagenic : non-mutagenic Ce :

compounds compounds 65



Nitro compounds are active when paired with aromati@
rings and inactive when paired with primary alkanes

Examples

I \

645-12-5 5275-69-4
5-nitro-2-furanoate 2-acetyl-5-
Mutagenic nitrofuran

Mutagenic °

N//O ? N//

N .

Vi Vi

/ k

nitroalkanes (primary)
Nitro(prop — hex)ane
Non-mutagenic

-
-

Mechanism
multiple resonance forms reactive
likely to be reduced metabolites
o
0 /
N\ [ s
| N\ <+ ~0 I \O
\ : R B
(0] (@] 4>7N{O I) NO2
aromatic nitro more \& /7 '\ nitro A
likely to be bioactivated I —
X/ reductase
| 7\
~? A\S \ N
I 7N
N nitroso
S %
/o
_/_N<
\o

aliphatic nitro less likely

to be bioactivated Benigni 2011 Chem Rev

Helguera 2006 Toxicol

McCalla 1983 Env Mutagen
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Marrying interpretability and statistical prediction aci
use QSAR models to validate descrlptor-based '

assertions | _ T,
Chemlcai struétural ‘ Virtual
L;; e data | screenmg .
& * r“ V ‘mﬂ'
QSAR model Mutagenic
(0] H
" / 94% AUC
//S N\ s q s 4 s q
(0]
76 significant %ﬁ %ﬁ %ﬁ
fragments () Q ()
T | 4 /N /N
\\ C: /H Non-mutagenic
N
// \ ﬁ r/ r) ﬁ J_
Structural alerts
\antagonlsm
utually influencing
fragments Image: Glowing molecule St rdrop, Optibrium

Data-driven drug design



Emerging applications of Al to chemical desig
and synthesis

& THE ROYAL SOCIETY OF CHEMISTRY [GB] | https://www.chemistryworld.com/news/wanted-synthetic-chemists-humans-need-not-apply/3008401.article

]ToxPiWizarleoxCa D file:///C:/Users/atroy G Google D New Tab D Save to Mendeley Savings & Investme D wtharvey.com/m8n2 ‘ Cepwan Jluct oxunaz E GS_5!

ﬁ NEWS OPINION MATTER ENERGY EARTH LIFE CULTURE CAREERS PODCASTS WEBINARS LONG READS

NEWS

A brave new world of robot chemists and
'synthesiser farms' awaits

| 24 JANUARY 2018

NEWS

Wanted: synthetic chemists (humans
need not apply)

24 JANUARY 2018

Automation could free chemists from tedious lab work — if

Algorithm decides on
chemical compromises when

© ptl misin g s€ If-d rivi ng F Hase, L Roch, and A Aspuru-Guzik, Chimera:
expe riments enabling hierarchy based multi-objective

S HANNAH KERR |3 SEPt optimization for self-driving laboratories. Chem.
Sci., 2018, DOI: 10.1039/c8sc02239a



http://xlink.rsc.org/?doi=10.1039/c8sc02239a

QSAR Modeling: Going Deep

Deep Learning has (re)emerged as powerful ML algorithm.
» Higher predictivity than other algorithms such as RF and SVM.
+ “We found (1) that deep learning methods significantly outperform all competing
methods” — Hochreiter group on ChEMBL data’

» “Our results also show that models built with Deep Neural Networks had higher
accuracy than those developed with simple machine learning algorithms” — Tropsha
group, Tox21 Challenge?

Deep Learning does not always provide “deep” improvement
 Acute Toxicity: “Overall performance of DNN models on datasets of up to 30K
compounds was similar to that of random forest (RF) models™

« Bioactivity: “DNN achieved on average MCC units of 0.009 higher than SVM™

Thinking Deep
“Although the performance of DNNs is generally better than RF using the standard
DNN parameter settings, their predictive capability is variable under different
parameter settings”™

1) DOI: 10.1039/C8SC00148K  2) DOI: 10.3389/fenvs.2016.00003
3) DOI: 10.1093/toxsci/kfy 111 4) DOI: 10.1186/s13321-017-0226-y
5) DOI: 10.1021/¢1500747n



Do newer methods such as Deep Learning trul
always outperform other ML approaches?

Large-scale comparison of machine learning
Chemical methods for drug target prediction on ChEMBL7

Science

ROYAL SOCIETY
__ B OF CHEMISTRY
Andreas Mayr, {21 Gunter Klambauer, &21* Thomas Unterthiner, & 1°
Marvin Steijaert,” Jérg K. Wegner, {2 Hugo Ceulemans, {2° Djork-Arné Clevert®

Authors’ statement: “We found that deep learning methods significantly outperform
all competing methods.”

Table 1 Performance comparison of target prediction methods. The table

input types. Overall, FNNs (second column) performed best. They signific NN N OO R SR 1
representations of compounds and SmilesLSTM uses the SMILES represer . .
FNN SVM RF " E . H .
StaticF 0.687 + 0.131 0.668 + 0.128 0.665 + 0.125 i ¥ ~ i T 3
SemiF 0.743 + 0.124 0.704 + 0.128 0.701 + 0.119 B m— _ . T e e
ECFP6 0.724 + 0,125 0.715 4+ 0,127 0.679 + 0,128 o .
DFS8 0.707 £ 0.129 0.693 + 0.128 0.689 + 0.120 T EE T T e S Kt :\ E
ECFP6 + TOXF 0.731 + 0.126 0.722 + 0.126 0.711 + 0.131 PRI R S U
Graph e
SMILES Fig. 2 Performance comparison of drug target prediction methods.

The assay-AUC values for various target prediction algorithms based
on ECFP6 features, graphs and sequences are displayed as boxplot.

Observation: the largest performance difference (AUC) between DNN and SVM or

RF using the same descriptors is 0.04 (mind that SE is an order of magnitude larger,

0.12)!



Recent hype about chemical toxicity
prediction

SCIENTIFIC o
AMERICAN. Engish v ¢

REACHACross™ O,

riome | Alternative Methods, which shall identify such shortcomings. L

The methods are made practically available in a collaboration
with Underwriters Laboratories (UL) (as REACHacross https://
www.ulreachacross.com; last accessed June 30, 2018; and the UL
Cheminformatics Suite, respectively).

Pricing

The costis $295 per end-point, per substance.

With the REACHAcross™ database constantly evolving with the addition of new data sources, you have the ability for the $295
purchase price to re-generate your report for one year from the purchase date.

For quantity pricing, please call 518-640-9283
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OXFORD

UNIVERSITY PRESS

Toxicological Sciences

Oy Vey! A Comment on "Machine Learning of Toxicological Big Data Enables
Read-Across Structure Activity Relationships Outperforming Animal Test

Reproducibility". Alves et al, Toxicol Sci. 2019 Jan 1;167(1):3-4

 Failure to take account of data heterogeneity
* Use predicted data to build the models

These calls are made on the basis of OECD guideline studies,
read across studies, QSAR studies and other information avail-
able in chemical dossiers submitted in service of REACH legisla-

» Use of inadequate data / Replication of compounds in a dataset
* No curation reported

* “Not reliable” data present on ECHA database (major source of

data) Future optimizations of the approach beside the expansion and
curation of the database should address the similarity metrics
employed (Luechtefeld and Hartung, 2017) and validate predic-
* Misuse/misinterpretation of statistics / Over-fitting of data / Failure to

validate a QSPR correctly

* Use of compounds with conflicted annotation
* Poor comparison of models with experimental assays

For the 6 tests often referred to as “toxicological 6-
pack” a reproducibility sensitivity of on average 70% was found
(Table 2); the Simple RASAR matched this with on average the
same 70%; by data fusion, 89% average sensitivity was achieved




.and the response...

Missing the Difference Between Big Data and
Artificial Intelligence in RASAR Versus Traditional
QSAR @

Thomas Luechtefeld, Dan Marsh, Thomas Hartung =

Toxicological Sciences, Volume 167, Issue 1, January 2019, Pages 4-5,
https://doi.org/10.1093/toxsci/kfy287
Published: 30 November 2018

The letter challenges the approach as one would challenge a traditional
QSAR, by which it ignores many attributes and consequences of the RASARs
construction and performance as an implementation of big data and

artificial intelligence (machine learning) (Hartung, 2016; Luechtefeld and
Hartung, 2017).

To state it simply: the RASAR models are not traditional OSARs, wherein a
highly curated, small training dataset is used to predict a smgle property

based on chemical descrmtors ie, classifications per hazard. ‘The publlshed
model uses data on 100 000+ chemlcal structures, calculates 5 billion+

similarities, and simultaneously makes 190 000 predictions for nine

hazards of toxic properties of chemicals: 87% are correct, which should
raise the question what we got right, not what we got wrong?




A brief history of “new” broad
SpeC.I.I.. smm mmmbila i Aablia AliAaAaar i, | |

Analyzing Learned Molecular Representations for Property Prediction

Kevin Yang*, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley,
Volker Settels, Tommi Jaakkola, Klavs Jensen, and Regina Barzilay

303 :;te this: J. Chem. Inf. Model. 2019, 59, 8, 3370- Artic Altmetric Citations T T T T T ( ‘
« Descriptors ,.,'
Publication Date: July 30,2019 v 228 2 5 48 9 9 F RO
Lttimn: AAL Aavm 1A 1NN fann inima NANNNT Property
destroy a pathogen for which no cure has existed, and it could even help in tHNJ \
©0e0cecco &

well as previous graph neural architectures on both public and proprietary data sets. Our empirical findings indicate that while
approaches based on these representations have yet to reach the level of experimental reproducibility, our proposed model
nevertheless offers significant improvements over models currently used in industrial workflows.




A brief history of “new” broad

spec
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Correction to Analyzing Learned Molecular Representations for Property Prediction

Kevin Yang*, Kyle Swanson*, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley,
Volker Settels, Tommi Jaakkola, Klavs Jensen, and Regina Barzilay

@ Cite this: J. Chem. Inf. Model. 2019, 59, 12, 5304— Articl Altmetric Citations

5305

Publication Date: December 9, 2019 v 2 58 1 1 8

Due to an error in the processing of the random forest model's predictions on classification data sets, our
original random forest AUC numbers were incorrect on six public classification data sets—HIV, BACE, BBBP,

Tox21, SIDER, and ClinTox—and on one proprietary classification data set—hPXR (class). We fixed the error

Table 1. (Random Split, Higher = Better) Comparison to Baselines on Public Datasets with Original and
Fixed Random Forest Numbers Using a Random Split

dataset  metric D-MPNN D-MPNN ensemble RF on Morgan (original) | RF on Morgan (fixed)
HIV ROC-AUC  0.816+0.023  0.836 £ 0.020 (+2.40% p=0.01)| 0.641 +0.022 (-21.45% |0.819 £0.025 (+0.31% p = 0.97)
BACE ROC-AUC  0.878+0.032 0.898+0.034 (+2.31% p=0.00)| 0.825+0.039 (-6.08% p | 0.898 = 0.031 (+2.26% p = 1.00)

BBBP ROC-AUC  0.913+0.026 [0.925+0.036 (+1.23% p=0.01)| 0.788 +0.038 (-13.77% |0.909  0.028 (-0.42% p=0.19)

Tox21 ROC-AUC  0.845+0.015 [0.861%0.012(+1.95% p=0.00)| 0.619+0.015(-26.75% |0.819 £0.017 (-3.06% p = 0.00)

SIDER ROC-AUC  0.646+0.016  [0.664 + 0.021 (+2.79% p=0.01)| 0.572+0.007 (-11.38% |0.687 £ 0.014 (+6.35% p = 1.00)

ClinTox ROC-AUC  0.894+0.027 [0.906 + 0.043 (+1.33% p=0.05)| 0.544 +0.031(-39.13% | 0.759 £ 0.060 (-15.12% p = 0.00)




A brief history of “new” broad
spectrum antibiotic discovery

c&en TOPICS~  MAGAZINE~  COLLECTIONS~ VIDEOS JOBS Q

CHEMICAL & ENGINEERING NEWS

COMPUTATIONAL CHEMISTRY

Al finds molecules that kill bacteria, but
would they make good antibiotics?

Experts praise the approach while remaining skeptical that the highlighted molecules could
reach the clinic

CORRECTION

This story was updated on March 5, 2020, to include information about a previous study
that identified antibiotic activity for halicin.

https://cen.acs.org/physical-
chemistry/computational-chemistry/Al-
finds-molecules-kill-
bacteria/98/web/2020/027?utm_source=Twit

ter&utm_medium=Social&utm_campaign=
CEN



Al: words of warnin

TLIE AASAMN/IEDC ATINNI

WA

N\

®
»

TOP DEFINITION

A1 Ai Ai

Ai Ai Ai is a phrase used by most evil
people with bad intentions




Tight Integration of Computational tools
experiment S

Target: NSP13 (project 2) Knowledge mining
VGACVLCNSQTSLRCGACIRRPFLCCKCCYDHVISTSHKLVLSVNPYVCNAPGCDVTDVTQLYLG
GMSYYCKSHKPPISFPLCANGQVFGLYKNTCVGSDNVTDFNAIATCDWTNAGDYILANTCTER (e . g . P D B, P u b M ed )

LKLFAAETLKATEETFKLSYGIATVREVLSDRELHLSWEVGKPRPPLNRNYVFTGYRVTKNSKVQI
GEYTFEKGAVVYRGTTTYKLNVGDYFVLTSHTVMPLSAPTLVPQEHYVRITGLYPTLNISDEFSSN
VANY...
1 (AlphaFold2)
ENDscript2/Blast
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Enamine REAL Space (~38B) virtual
screenings for AVIiDD targets

SARS-CoV2 Nsp13 CHIKV nsp2-protease
| A /R

Nominations: Nominations: Nominations:
« 150 compounds have been purchased® 950 compounds have been purchased « 150 purchasable compounds
1 compound showed high nM activity 30 de novo generated compounds

- 7 compounds are in ~10uM range  being synthesized
« 3 compounds showed < 10uM activity

The HIDDEN GEM workflow is currently being executed for multiple viral targets



Societal issues: how to improve the

quality of published data and models

* Develop clear guidance (raise acceptance bar)
for both authors and reviewers

— Minimal model acceptance criteria similar to JMC
requiring data on compound composition and purity

— Availability of both curated data and models similar
to protein journals requiring deposit to PDB to
accept a paper describing new protein structure

 Inform applied journals about our acceptance
rules

« Work with data journals and database groups
(e.g., ChEMBL, PubChem) on data quality

standards
* Publish in high-profile journals 80




NATURE Rli\"lli\‘\'S| DRUG DISCOVERY
VOLUME 10 | SEPTEMBER 2011 |661

e PERSPECTIV
Minimum information about a
bioactive entity (MIABE)

Sandra Orchard, Bissan Al-Lazikani, Steve Bryant, Dominic Clark, Elizabeth
Calder, lan Dix, Ola Engkvist, Mark Forster, Anna Gaulton, Michael Gilson,
Robert Glen, Martin Grigorov, Kim Hammond-Kosack, Lee Harland, Andrew
Hopkins, Christopher Larminie, Nick Lynch, Romeena K. Mann, Peter Murray-
Rust, Elena Lo Piparo, Christopher Southan, Christoph Steinbeck, David

Guidelines and
associated software tools
for reporting, storing, and
sharing detailed
information considered to
be important to include
with published data sets

ES

on bloactlve entltles Wishart, Henning Hermjakob, John Overington and Janet Thornton
Molecule properties (names, structure, InChi, salt, prodrug, ...)
Molecule production (chemical synthesis, purity, characterization, ...)

Physicochemical propertics (molecular weight, water solubility, hydrophobicity, ...)

In vitro cell-free assays (primary target, assay details and parameters, delivery

systems, secondary gene targets, ...)
Cellular assays (cell type, conditions, assay type, ...)
Whole-organism studies (animal/plant studies, disease model, toxicology, DDI, ...)

Pharmacokinetic studies (absorption, dosing route, half-life, Vmax, metabolism, ...)




Conclusions and Outlook
« Rapid accumulation of large biomolecular datasets and VS

libraries (especially, in public domain):
— Strong need for both chemical and biological data curation

* Novel approaches towards Integration of inherent chemical properties with
additional data streams
— improve the outcome of structure — in vitro — in vivo extrapolation
* Interpretation of significant chemical and biological descriptors emerging
from externally validated models
— inform the selection or design of effective and safe chemicals
« Exciting developments at the interface between computational and organic
chemistry
— Critical shift from discovery in databases to design and Al-driven robotics (SDL!)
» Tool and data sharing
— Pubic web portals (e.g., Chembench, OCHEM) 82




