Chem Dinformatique

Laboratory of Chemoinformatics UMR 7140 CNRS/UniStra

Laboratory of Chemoinformatics in October 2022

A. Varnek (Professor)

D. Horvath (DR2 CNRS)

G. Marcou (MCF)

O. Klimchuk (IE UniStra)

+ 1 Postdoc + 10 PhD students

« Mirror » Laboratory

R. Staub (Ass. Professor)

P. Gantzer (postdoc)

Why Chemoinformatics?

Chemoinformatics is a major discipline in theoretical chemistry

Molecular informatics, 30(1), 20-32

Chemoinformatics and "Cheminformatics emerged after 1997

Thomson's Web of Science database

Social and innovation challenges

Exponential growth of chemical information

Chemical Abstract Service. 10th million chemical substance in 1990, 196 million substances in 2023

Research and development concern

Novartis first chemoinformatics tools in 1995

✓ REACH directive

Since 01/06/2008, 22395 substances have been registered

US Environmental Protection Agency under the (new) Toxic Substances Control Act

45031 cases since 1971

chemoinformatics approaches have been proposed by OECD since

<u>Chem Cinformatique</u>

Approaches and tools for computer-aided molecular design

4 key research areas

1 AI-driven design of new compounds and materials

Chem. Soc. Rev., **2020**, 49, 3525 J. Chem. Inf. Model., **2019**, 59, 4569

J. Chem. Inf. Model. 2021, 61, 179 Drug Disc. Today: Technology, 2019, 32, 99

Competitive advantage:

• Original methodology for predictive structure-property modeling and *de novo* design

Potential applications:

• Development of new synthetically feasible molecules and materials possessing desirable properties

Scientific Reports, **2021**, 11, 3178 J. Chem. Inf. Model., **2021**, 61 , 554

J Med Chem. **2018**, 61, 5719 J. Chem. Inf. Model., **2019**, 59, 1472

Analysis of ultra-large chemical spaces using molecular cartography

Case study:

• Comparison of commercial and biologically relevant chemical spaces

Generative Topographic Mapping

- visualization of both individual data (chemical structures) and their probability distribution on a 2D map;
- molecules populating a given area on the map are expected to have similar properties;
- prediction of properties of new molecules projected on the map which, therefore, can be used as a virtual screening tool;
- suitable for Big Data analysis (billions of molecules)

Analysis of ultra-large chemical spaces

Collaboration with Inst. Org. Chem., Kiev, Ukraine

Yu. Zabolotna et al., « Searching for hidden treasures », J. Chem. Inf. Model. 2021, 61, 1, 179–188

REACH-chemical space

New compounds profiling

University of Strasbourg

ISIDA/Predictor

- Clear reliability evaluation
- > Mechanistic interpretation: ColorAtom
- > Automatic QPRF (QSAR Prediction Reporting Format) generation

*http://infochim.u-strasbg.fr/cgi-bin/predictor_reach.cgi

Specifications

- Supported Systems
- Command line
- Graphical User Interface
- Web Interface
- REST

University

of Strasbourg

KNIME Integration

Models

Biological properties

- ✓ ChEMBL activities (>600)
- Antiviral (flavivirus, coronavirus, HIV)
- Antiparasitic (Malaria)
- Antibacterial (S. Aureus, E. Coli)

Medical properties

- Drug-drug interactions (carbamazepine and psychotropes)
- Diagnostic (multiple sclerosis)

Thermodynamics

- Oxydoreduction potential
- ✓ Viscosity

University of Strasbourg

- Ionic conductivity
- Metal-ligand affinity

- ✓ Vapor-liquid equilibria
- Transition state temperatures (boiling point, melting point, glass transition)
- ✓ Solubility
- Auto-ignition temperature

Regulatory

- Ready biodegradability
- ✓ Half-life
- Acute toxicity
- Aquatic toxicity
- Endocrine disruption (Estrogen receptor, androgen receptor)

KNIME Integration

AI-driven design of new compounds

Case studies:

- antivirals (SARS COV2)
- enantioselective catalysts
- efficient CO₂ absorbents
- tubulin activity modulators

$$PROPERTY_{pred} = \mathbf{f}(\underbrace{\mathsf{NH}}_{\mathsf{N}} \underbrace{\mathsf{NH}}_{\mathsf{S}})$$

- tuneable ISIDA descriptors
- special deep neural network architectures
- coupling of AI tools with chemical cartography
- hundreds of ML models for different PhysChem properties and bioactivities integrated in a user-friendly interface

Discovery of new SARS-CoV-2 M^{pro} inhibitors

collaboration with the Chumakov Center, Russia

- The data for SARS-COV2 were not available at the very beginning of the COVID19 pandemic. ٠
- SARS-COV Relevant Antiviral Space map was built for CoVs ligands studied before 2020 ٠

1.3 billion cmpds

Computer-aided design of enantioselective catalysts

Collaboration with ICReDD, Hokkaido Univ.

Benjamin LIST Max-Planck-Institut für Kohlenforschung, Germany ICReDD, Hokkaido University, Japan

Machine-learning SVM models based on the ISIDA descriptors were used to design efficient catalysts of stereoselective hydroalkoxylation reaction. The designed molecule is much more selective (95.5%) than the best catalyst from the training set (82%).

Design of effective solvents for CO₂ capture

Collaboration with TOTAL Energies and MINES ParisTech

Using kinetic experiments, molecular simulations and machine learning, a class of tertiary amines that absorb CO2 faster than a typical commercial solvent has been identified

In silico design of Tubulin activity modulators

- For ~ 60% of computationally selected compounds, crystal structures validate binding modes as predicted by in-house docking tool S4MPLE
- Some of them display a clear microtubule depolymerizing effect

Chemical reaction mining

Case studies:

• AI-driven design of new chemical transformations

Condensed Graph of Reaction

- representation of a chemical transformation as a single molecular graph (pseudomolecule) leading to a significant simplification of machine-learning modelling of chemical reactions
- ML models for reaction kinetics and thermodynamics, optimal reaction conditions
- retrosynthesis

AI-driven design of new Suzuki-like reactions

Collaboration with ICReDD, Hokkaido Univ.

- Each reaction was encoded by a single *Condensed Reaction Graph (CGR)*
- Special *SMILES/CGR* strings were used as an input

- 13 new (with respect to the training data) Suzuki-like reactions have been detected
- 5 of them have been found in the literature

AI-driven design of new Suzuki-like reactions

Conception de réactions chimiques de synthèse inédites à l'aide de l'intelligence artificielle (IA).Certaines réactions ont été retrouvées, a posteriori, dans des publications confirmant la capacité de cette IA à proposer des réactions plausibles.

Scientific Reports | février 2021 Chimie de la matière complexe

Master in Chemoinformatics

- one of the first programs in the field (since 2001)
- 5 double diploma agreements
- Erasmus-Mundus program *Chemoinformatics PLUS*

International events

- Summer Schools in Chemoinformatics (since 2008)
- French Japanese workshops (since 2008)
- French Israeli workshops (since 2018)

9th Strasbourg Summer School on Chemoinfomatics

Strasbourg, 24 - 28 June 2024

9th Strasbourg Summer School on Chemoinfomatics

Strasbourg, 24-28 June 2024

- Plenary lectures
- Short oral presentations
- Poster session
- Tutorials
- Cultural program
- Beer & Bretzel party
- Vine & Cheese party

- Conference diner
- Pre-conference
 - "Crash course in Chemoinformatics"
 - for beginners
 - Hackathon
 - Advanced skills

Strasbourg, 2022

Education in Chemoinformatics

- Master in Chemoinformatics (2001) unique in Europe
- Master In Silico Drug Design (2011) with Paris-Diderot and Milan
- Double diploma programs
- 5 agreements signed with universities of Kiev, Milan, Ljubljana, Tel-Aviv, Lisbon
- Erasmus Mundus program "Chemoinformatics PLUS"

7 partners for 6 tracks

(Particular situation for Kyiv and the track no.6)

TRACK	YEAR 1			YEAR 2		
	51	52		51	52	
In Silico Drug Design	Strasbourg	Milan		Paris	Internship	
Chemoinformatics and Physical Chemistry	Milan	Milan	er School	Strasbourg	Internship	
Chemoinformatics for Biophysical and Computational Chemistry	Ljubljana	Ljubljana	Mandatory Summer School	Strasbourg	Internship	Optional Summer School
Chemoinformatics for Organic Chemistry	Lisbon	Lisbon	2	Strasbourg	Internship	
Chemoinformatics and Materials Informatics	Ramat-Gan	Ramat-Gan		Strasbourg	Internship	

First promotion: 2022-2024

https://masterchemoinfoplus.chimie.unistra.fr/

EMJMD Primary Topics

Chemoinformatics

- Coding of chemical structures
- Chemical space
- Chemical similarity and diversity
- Chemical databases and data sources
- Molecular descriptors
- Data science
- IA and QSAR
- Generative models
- Drug Design
 - Chemical libraries of biological interests
 - Pharmacodynamics, pharmacokinetics
 - ADME/Toxicity
 - Environmental fate
 - Protein ligand-docking
 - Virtual screening
 - Profiling of chemical libraries
 - Structural determination and modeling of macromolecules
 - Biological environment

Quantum Chemistry

- Conventional quantum chemical methods
 Semi-empirical, Hartree-Fock, DFT
- Physical motivations of quantum chemistry calculation methods
- Applicability domain of quantum chemical models
- Main software packages for quantum calculations

- Molecular Modeling
 - Molecular mechanics and molecular dynamics
 - Force fields and empirical potential energy functions
 - Molecular modeling as a tool in chemical research
 - Intra- and supra-molecular interactions
 - Emerging properties at macroscopic scales
 - Thermodynamics ensembles
 - Solvation hydrophilic and hydrophobic
 - Conformational analysis and empirical representations
 - Rational choice of methods
 - Evaluation of the reliability of results

Data mining and artificial intelligence

- Methods
 - Classification, Regression, Clustering
- Validation
- Tuning method parameters
- Ensemble modeling
- Active learning
- Multi-task learning
- Semi-supervised learning and transductive inference
- Recommender systems
- Generative models and adversarial learning
- Autoencoders

Machine-Learning / Artificial intelligence modeling

- tuneable ISIDA descriptors
- special deep neural networks architectures
- coupling of AI tools with chemical cartography
- Hundreds of ML models for different physchem properties and bioactivities integrated in a user-friendly interface

Chemical cartography with Generative Topographic Mapping

- visualization of both individual data (chemical structures) and their probability distribution on a 2D plane;
- prediction of properties of new molecules projected on the map and, therefore, can be used as a virtual screening tool;
- suitable for Big Data analysis (billions of molecules)

Condensed Graph of Reaction

- representation of a chemical transformation as single molecular graph (*pseudomolecule*) leading to significant simplification of machine-learning modelling of chemical reactions
- ML models for reaction kinetics and thermodynamics, optimal reaction conditions
- retrosynthesis

Thank you!

Text-books in chemoinformatics

« Introduction to Chemoinformatics » by Igor Baskin, Timur Madzhidov and Alexandre Varnek

« Fundamentals of Chemoinformatics », WILEY, 2024

Laboratory of Chemoinformatics 2017-2022

Publications	88
Chapitres de livre	7
Thèses soutenus	10
Thèses actuellement en cours	10
Contrats industriels	10
Projets ANR	2
Marie Curie ITN H2020	2