
Monte Carlo tree search and
multi-objective variants
Mike Preuss
March 12, 2024

picture from Greyerbaby on Pixabay

who’s that Mike?
associate prof LIACS (computer science Universiteit Leiden/NL):

game AI (->Chemistry), evolutionary algorithms, social media computing

started programming with BASIC on Commodore C64 ~ 1982

 (btw 320 x 200 display mode called hires, 38kB usable memory)

first programming lecture by Hans-Paul Schwefel: Scheme

physics minor with Dietrich Wegener (experimental particle physics)

DW on physicists: “unbounded ignorance, but unlimited intelligence”

doctor father Hans-Paul Schwefel (pure co-incidence)

PhD on Multimodal Optimization by Means of Evolutionary Algorithms

since 2007 active in the game AI field

collaborating quite a lot with Chemistry inside/outside of Leiden

2

Hans-Paul Schwefel

Dietrich Wegener

evolutionary computation
last PhD student of Hans-Paul Schwefel (co-inventor of the

Evolution Strategy, most important message: expect the unexpected

focus on multi-modal optimization (detect several good,

different solutions simultaneously)

work on experimental methodology

(btw, this iconic experiment is manually executed Generative AI)

3

picture from Hans-Paul Schwefel

what do I want to tell you?

you may not believe it but there is a lot of uncharted

territory in science, CS as well as Chemistry

there are always quite a lot of alternatives, nothing

is purely “right” or “wrong”

it is VERY important to do fail-fast experimentation

(long planning means high investment)

be ready to let ideas go if they don’t work

but first try variations in parameters, problems etc

the stuff I talk about today is complex and best

understood by making your own experiments

4

picture from Tumisu on Pixabay

quick MCTS recap

MOO primer (multi-objective optimization)

MOO-MCTS algorithms

first results and outlook

what’s on the menue today

picture from
Markus Winkler
on Pixabay5

alternative to classical game-tree search (Min-Max)

for finding good sequences (forget optimality) in big trees

big >= chess (> 10^40 reachable positions)

we give up searching thoroughly

instead, we use:

heuristics for the direction and

random playouts for detecting what is good

pictures from pixabay

6

Monte Carlo Tree Search in a nutshell

7

multi-armed bandit problem
given that there are several choices, which one do we take?

this relates to a well-known decision making problem:

the Multi-Armed Bandit Problem (MAB)

at each step pull one arm

noisy/random reward signal

for later: pull = action, e.g. a reaction in synthesis

pick the arm so as to:

minimize regret (expected loss

due to not picking the best arm)

maximize expected return
7

upper confidence bound (UCB)
balance exploitation and exploration

an example: UCB1

Q(s,a): average of rewards after taking action a from state s

N(s): times the state s has been visited

N(s,a): times the action a has been picked from state s

C: constant that balances exploitation (Q) and exploration terms

application dependent, typical value for single player games with rewards in [0,1]:

the formula is nicely explained here:
https://towardsdatascience.com/the-upper-confidence-bound-ucb-bandit-algorithm-c05c2bf4c13f

8

https://towardsdatascience.com/the-upper-confidence-bound-ucb-bandit-algorithm-c05c2bf4c13f

9

building a tree with UCB1

9

build a tree: search N steps in the future

the search is not exhaustive: tree grows

asymmetrically

repeat iteratively, return action with e.g.:

the highest reward after N steps

the highest average reward after

1 step (Q (s, a))

the most visited node after 1 step

(highest N (s, a) for any a).

the highest UCB1 value after 1 step, etc.

10

Monte Carlo Tree Search (MCTS)

10

depends on two concepts:

true value of action can be approximated via random simulations

the values may be used efficiently to adjust the policy towards a

best-first strategy (brute force is too expensive)

advantages:

anytime algorithm – stop whenever you like

needs only game rules:
actions

terminal state evaluation (win, loss, draw, score)

no need for a heuristic function, but can be enhanced with domain knowledge

key advantage over MIN MAX

1111

MCTS – the big picture
selection: select promising node within the tree (by means of UCB1)

expansion: add new leaf

simulation: play out the game until we reach a terminal state (and obtain a reward)

backpropagation: inform the “higher” nodes about move potential

selection is also called “tree policy”, simulation the “default policy”

for each node, store: incoming action a, associated state s, total simulation reward Q, visit count N

transfer MCTS to Chemistry

we put the end product into the root

and search the possible reactions (actions)

backwards until we hit compounds we have

MCTS is not an algorithm, but a family of algorithms

you have a lot of degrees of freedom at every stage

we use reaction preferences as trained by deep learning

resulting trees still huge: we see only a very small part

12

picture from 4339272 on Pixabay

so what is multi-objective?

13

Opel Manta, fast and cheap ;-)
picture from Jürgen on Pixabay

for this part I use some figures from the Gecco 2018 tutorial slides of my esteemed

colleague Dimo Brockhoff: HAL Id: hal-01943586 https://inria.hal.science/hal-01943586

we may have different ideas of what is good

e.g. a car may be fast, it may be cheap (usually

does not go well together, see right)

good multi-objective algorithms for 2 and 3

objectives, in 4 or 5D it is getting much harder

we can work with weightings but then we miss

some solutions

weighted objectives and their problems

per weighting we obtain 1 best solution

we could go over all possible weightings

then we obtain a set of solutions

but depending on the problem (concave fronts)

we may miss some best solutions

also: how many weight combinations?

in any case: the solution is a SET!

14

picture from Tom on Pixabay

the Pareto notion of ideal compromises

15 picture from Dimo Brockhoff

16 picture from Dimo Brockhoff

17 picture from Dimo Brockhoff

domination and “unnecessary solutions”

18 picture from Dimo Brockhoff

19 picture from Dimo Brockhoff

why shall we want to have a solution set?

we “explore” the Pareto front/set:

how expensive is it to be faster (car example)?

we have solutions for lots of weightings at once

when unsure about a constraint, we can shape it as

objective and see what its “cost” is

we have alternative solutions in case decision

makers do not like a specific solution

20

picture from 育银戚 on Pixabay

so what is performance?

much more ambiguous than for one objective

usually the quality of the final set is measured by the

“hypervolume” (~area under curve)

more complicated if speed is also part of the

performance measure

direct comparison of SO and MO algorithms not very

meaningful as they provide different types of results

(single solutions vs sets of solutions)

exceptions for multiobjectivization (helper objectives)

21

picture from Santiago Gonzalez on Pixabay

22 picture from Dimo Brockhoff

what is better?

restricted algorithm zoo (of EMOA)

lots of algorithms out, some of the more well known:

NSGA-II: old, known to be good only for 2 objectives

SMS-EMOA: fast but depends on hypervolume computation

MOPSO: PSO driven variant (particle swarm optimization)

IBEA: (binary) indicator based, not hypervolume

MOEA/D: based on decomposition (multiple SO in parallel)

SEMO: old, very simple, used only in theory

no “best” algorithm because:

benchmarking / performance measuring not unambiguous

overall goal unclear and too many design possibilities23

picture from Pfüderi on Pixabay

24

existing MO MCTS algorithms

Wang2012, Perez2015, Chen2019

this is almost nothing...

fusion of MO and MCTS leaves a lot of design space

Perez 2015
main idea:

every node keeps a local Pareto front representing the

tree/pareto fronts below it

Pareto front is backpropagated up the tree

then remove dominated solutions

replaces Q(s,a) in UCB1 by the hypervolume

method has originally nothing to do with Chemistry

our first adaptation (Alan Hassen, Pfizer/Uni Leiden, ours

is quite different) performs similar to weighted SO MCTS

we tried to push diversity but still small. coarseness of

reachable alternatives?
25

picture from Alan Hassen

Chen 2019

main idea:

redefines the UCB formula for selection by a Pareto

UCB formula

meaning that a Pareto set is constructed from the

available children in every node

otherwise MCTS algorithm mainly unchanged

is currently explored by Astra Zeneca Gothenburg

(Samuel Genheden, Helen Lai, Christos Kannas) but

also with mixed success

26

pictures from Alan Hassen

27

what do we want?

MO-MCTS is not supposed to be faster than SO-MCTS

it could provide interesting solution sets

multi-objective approach only reasonable if objectives are

conflicting (otherwise single solution and SO-MCTS faster)

another problem is sparseness of alternatives: MO methods

mostly made for continuous spaces

we presume we need to “push” for more diversity

so what now?

lots of possibilities for algorithmic variants not

yet tried: e.g. two trees?

we need to be clearer on what the goal is

best potential when we have large fronts and

these represent many different alternatives

we need to make sure objectives are as little

aligned as possible

we need to provide “many diverse” actions

28

picture from shauking on Pixabay

MCTS is a framework rather than an algorithm

MOO provides a lot of algorithms/performance measures

very few existing MO-MCTS approaches

first practical tests not satisfactory

there should be potential to improve, not totally clear how

diversity is probably important

take home

picture from OpenClipart-Vectors on Pixabay

29

picture by Oleksandr Pidvalnyi on Pixabay

questions/ comments?

	Slide 1: Monte Carlo tree search and multi-objective variants Mike Preuss
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

